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a b s t r a c t

Type 2 diabetes mellitus (T2DM) is a highly complicated metabolic disorder for which there is worldwide
effort for the identification of susceptibility genes. Polymorphisms of the Apolipoprotein E (ApoE) gene
are associated with plasma lipid and lipoprotein levels and influence cardiovascular risk. Since insulin
resistance is known to be strongly associated with metabolic dyslipidemia, ApoE polymorphisms have
been implicated in predisposition to diabetes but the results of the individual studies were inconclusive.
We present here a meta-analysis of population-based case–control genetic-association studies relating
ApoE polymorphisms and T2DM. We included in the analysis 30 studies, which reported data of ApoE
genotypes in 5423 T2DM patients and 8197 healthy unrelated controls. Multivariate and univariate
methods suggest a significant role played by the E2 allele, since carriers of the E2 allele were at elevated
risk for T2DM (Odds Ratio = 1.18, 95% CI: 1.02, 1.35). There was no evidence for publication bias or other
small-study related bias or significant heterogeneity in the analyses. Cumulative meta-analysis revealed
no trend of the effect estimates over time and influential analysis excluded the possibility of a single
influential study. E2 allele of ApoE seems to be a moderate risk factor for T2DM. Meta-regression analysis
provided some weak evidence that the risk conferred by E2 allele is mediated through altering serum
lipid levels (Total Cholesterol, LDL and HDL). Further studies are needed in order to elucidate the meta-
bolic mechanism of this association as well as to study its effects on larger populations.

� 2010 Elsevier Inc. All rights reserved.
Introduction

Type 2 diabetes mellitus (T2DM; formerly known as non-insulin
dependent diabetes mellitus, NIDDM) is a complicated metabolic
disorder. The incidence of diabetes is dramatically increasing
worldwide due to changes in human behavior and nutrition, since
sedentary lifestyle and obesity are important risk factors for the
development of T2DM [1]. The disease is epidemic and is believed
that in 2010 two hundred twenty-one million people will suffer
from diabetes worldwide, an increase of 46% compared to 2000
[2]. Although T2DM is considered to be an adults’ disease, there
is epidemiologic evidence of increasing incidences on younger peo-
ple [3]. Due to the increase of diabetes incidence and the expansion
of the disease on youth, great effort has been put on identifying
susceptibility genes for the disease [4–9].

Apolipoprotein E (ApoE) is a candidate gene for the develop-
ment of T2DM due to its critical role in the lipid metabolism. ApoE
is mapped at chromosome 19 and is a polymorphic gene, possess-
ll rights reserved.
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ing three major alleles (E2, E3, E4) with six possible genotypes (E2/
2, E2/3, E2/4, E3/3, E3/4, E4/4). The gene encodes a protein of 299
amino acids with three isoforms (e2, e3, e4) which differ in two
amino acid residues at positions 112 and 158. The ApoE e3 isoform
possesses a cysteine at position 112 and an arginine at position
158, while e2 possesses cysteines at both positions and e4 pos-
sesses arginines at both positions [10]. The most common isoform
is e3 with a frequency of approximately 70–80%. The other two iso-
forms, e2 (�5–10%) and e4 (�10–15%), have been thought to be
dysfunctional [11].

Human lipoproteins are found in plasma and are composed of a
nonpolar lipid core, consisting of triglycerides and cholesteryl es-
ters and an external layer of phospholipids and apolipoproteins
[12]. Apolipoproteins are the only protein components of this com-
plex. There are about a dozen of different apolipoproteins repre-
sented by five major types (A, B, C, D, E) some of which are
categorized in other subtypes [13]. ApoE is synthesized mainly in
the liver but it is also found in other tissues like brain, spleen
and kidneys. Similar to the other apolipoproteins, ApoE plays a role
in the stability and solubility of lipoproteins during their circula-
tion in human plasma. ApoE is important for the development of
several plasma-lipoprotein lipid particles like very low-density
lipoproteins (VLDL), intermediate density lipoproteins (IDL), high
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density lipoproteins (HDL) and chylomicrons. Besides its role to the
formation of the different kind of lipoproteins, ApoE acts also as a
ligand for the binding of lipoproteins to plasma lipoproteins recep-
tors [14]. Low-density lipoprotein receptor (LDLR) is a membrane
protein that mediates the endocytosis of cholesterol-rich LDL and
specifically recognizes Apolipoprotein E. Thus, it plays an impor-
tant role in the regulation of plasma and cellular lipid concentra-
tions [15].

Apolipoprotein E plays a significant role in lipid formation and
thus, it has been found to be associated with plasma lipid and lipo-
protein levels [16,17]. The three isoforms have different chemical
stability (e4 < e3 < e2) [18]. Moreover, the genetic variation of Apo-
lipoprotein E plays an important role in dietary fat clearance on the
metabolism of dietary fats [19]. Several large meta-analyses have
documented that E4 is associated with increased risk for Coronary
Heart Disease (CHD) [20,21], whereas the E4 allele is also signifi-
cantly associated with Ischemic Cerebrovascular Disease (ICD)
[22,23]. In a recent large meta-analysis, individuals carrying the
E2/2 genotype had about 31% lower mean low-density lipoprotein
(LDL) than those with the E4/4 genotype. Compared to individuals
with the E3/3 genotype, E2 carriers had a 20% lower risk of CHD
and E4 carriers have a slightly higher risk [23]. In addition to the car-
diovascular risk, E4 allele has been found to represent a major risk
factor for Alzheimer’s disease [24] and a risk factor for dementia in
Parkinson disease [25], whereas on the other hand, it has been
shown to confer protective effect of up to 40% in age-related macular
degeneration [26]. Another meta-analysis suggested that E4 allele
affects cognitive performance in healthy aging, although the influ-
ence is relatively small and specific to certain domains of cognitive
performance [27]. Insulin resistance is known to be strongly associ-
ated with metabolic dyslipidemia and the correlation of lipid pro-
files with diabetic phenotypes is important, since T2DM patients
have an atherogenic lipid profile, which greatly increases their risk
of CHD compared to people without diabetes [28,29]. Consequently,
ApoE polymorphisms have also been implicated in predisposition to
diabetes, but the results of the individual studies were inconclusive.
We present here for the first time in the literature a meta-analysis of
population-based case–control genetic-association studies relating
Apolipoprotein E polymorphisms and T2DM.

Materials and methods

Retrieval of published studies

We performed a systematic computerized literature search using
PUBMED for papers published before October 1st, 2008. The search
was performed using various combinations of keywords like
(‘‘ApoE” OR ‘‘Apolipoprotein E”) AND (‘‘polymorphism” OR ‘‘variant”
OR ‘‘allele” OR ‘‘mutant” OR ‘‘mutation”) AND (‘‘type 2 diabetes” OR
‘‘NIDDM” OR ‘‘type II diabetes” OR ‘‘diabetes type 2” OR ‘‘diabetes
type II” OR ‘‘non-insulin dependent diabetes”). We also retrieved re-
lated articles from the reference lists of the papers that we had iden-
tified during the search. The full text of the articles was read in order
to decide if the article included data of interest. We also checked for
special meeting issues in order to retrieve studies that were not in-
cluded in computer indices and may bias the meta-analysis results if
not included [30]. We also decided to include in our meta-analysis,
studies written in languages different than English in order to avoid
local literature bias [31]. No study was rejected because of low qual-
ity data and no quality scoring was performed since modern ap-
proaches advocate against this approach [32,33].

Data extraction

The full text of the retrieved articles was read in order to find
the data of the genotypes for diseased (cases) and healthy individ-
uals (controls). Some of the studies reported incomplete genotype
data and we had to calculate them using other information in the
manuscripts such as allele frequencies etc. Studies from which it
was impossible to retrieve any useful data for diseased and healthy
individuals like genotypes or allele carriers that could be poten-
tially used in any genotype or allele contrast in the subsequent
analyses (see below) were rejected. From each study we extracted
the following data: PUBMED ID, first author’s name, year of publi-
cation, ethnicity and country of population studied and popula-
tion’s racial descent. For every study we retrieved the number of
healthy and diseased individuals for each polymorphism and we
calculated the ones that were not reported. We also collected sum-
mary study-level data for cases and controls concerning the total
cholesterol (TC) levels, the low-density lipoproteins (LDL), the high
density lipoproteins (HDL) and the triglyceride (TG) levels that
could be potentially used in a meta-regression analysis [34].

Statistical analysis

The Odds Ratio (OR) was used to compare contrasts of geno-
types and alleles between cases and controls. In case of zero cell
counts a continuity correction was applied by adding 0.5 to all cells
of the contingency table. Initially, for avoiding multiple compari-
sons comparing the effect of the genotypes against a reference
genotype, we used a recently proposed multivariate random-ef-
fects method of meta-analysis that takes into account the pairwise
correlations of the ORs [35]. Genotype E3/3 was chosen as refer-
ence category (baseline) for this analysis since it is the most com-
mon among the healthy and diseased subjects with a frequency of
about 67% as well as because the literature suggests that this is the
‘‘wild-type” genotype (i.e. the e4 isoform has been thought to be
dysfunctional). Afterward, we proceeded by grouping the geno-
types and allele carriers in order to derive a summary OR for the
most likely genetic model of inheritance. Data were combined
using random-effects models [36] with inverse-variance weights.
In case of heterogeneity, random-effects models are more appro-
priate since they estimate a between-study variance (s2), whereas
when heterogeneity is absent, random- and fixed-effects methods
coincide. We calculated combined ORs along with their 95% CIs for
each genotype or allele contrast (i.e. E2 carriers vs. the others, E2
alleles vs. the others and so on) using a standard random-effects
method [36]. The between-study heterogeneity was evaluated
using the chi-square based Cochran’s Q statistic [37] and the incon-
sistency index (I2) [38].

Publication bias or other small study bias was evaluated using
the rank correlation method of Begg and Mazumdar [39]. We also
used the fixed-effects regression method of Egger et al. [40] and its
random-effects analog [41]. In an attempt to identify potential
influential studies, we calculated the effects estimates (ORs) by
removing an individual study each time and then checked if the
overall significance of the estimate or of the heterogeneity statistic
was altered. Cumulative meta-analysis [42,43] was performed in
order to identify a possible trend of the combined estimate over
years, a situation that often introduces a special form of bias (the
so-called ‘‘Proteus phenomenon” or the ‘‘winner’s curse”) in genet-
ic-association studies [44]. For the detection of the time-trend, we
used the standard cumulative meta-analysis approach [42], which
consists of visually inspecting the plot and a recently proposed
regression-based method [45]. We performed tests for the
Hardy–Weinberg Equilibrium (HWE) at the genotype distribution
of the controls’ population, in order to assess the influence of the
departures from HWE on the overall estimates [46]. For testing
HWE given that we have to deal with multiple alleles, we used a
specialized method along with the accompanied software
(http://www.biology.ualberta.ca/jbrzusto/hwenj.html) [47]. Sub-
group analyses were conducted appropriately in order to
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investigate the effect of dichotomous variables (racial descent of
the populations, deviations from HWE, etc.), whereas meta-regres-
sion analysis was carried out concerning continuous variables
(LDL, HDL, TG, TC). For comparing the mean levels of covariates be-
tween cases and controls we used a standard t-test. For the statis-
tical analysis we used Stata 10 (Stata Corporation, College Station,
TX, USA). In all cases statistically significant results were declared
those with p-value < 0.05.
Results

The literature search through PUBMED yielded initially 133
published articles. We performed a screening on the identified arti-
cles to choose those which include valuable data for our purposes.
One hundred and three papers were excluded since they contained
no useful information. For instance, they reported in the abstract
some of the search terms (i.e. diabetes and ApoE) but there were
actually studies that had nothing to do with diabetes. Few studies
were discarded also because they did not report any data that can
be used in the analysis (i.e. the genotype or allele frequencies for
any of the contrasts between cases and controls). Usually, these
were studies in which diabetes was not among the primary out-
comes. Finally, we came up that 30 published research studies re-
ported data for a healthy (non-diabetic) group and a T2DM patients
group. The identified studies contained in total information for
8197 healthy (non-diabetic) subjects and 5423 T2DM patients.
None of the identified studies used a family-based design. We
found 15 studies on Asian-descent populations, 11 studies on Cau-
casian or European-descent populations, whereas five studies re-
ported data concerning populations of mixed origin (Caucasian/
Table 1
Characteristics of the studies included in the meta-analysis. We list the first author and th
Other usually refer to mixed populations, e.g. Caucasians/Africans or Caucasians/native Am

Author Year Country Descent Cases

E2/2 E2/3 E2/4 E3/3

Eto [60] 1986 Japan Asian 0 9 0 73
Eto [53] 1987 Japan Asian 0 5 1 150
Vogelberg [83] 1988 Germany Caucasian 3 2 1 26
del Pozo [49] 1988 Spain Caucasian 0 6 0 27
Imari [84] 1988 Japan Asian 0 12 2 63
Shriver [85] 1991 USA Other 0 19 2 187
Boemi [86] 1993 Italy Caucasian 4 56 6 315
Horita [61] 1994 Japan Asian 3 27 3 317
Eto [59] 1995 Japan Asian 1 25 1 192
Kamboh [48] 1995 USA Caucasian 0 23 5 62
Kamboh [48] 1995 USA Other 0 28 2 150
Vauhkonen [87] 1997 Finland Caucasian 0 7 3 48
Kimura [88] 1998 Japan Asian 0 13 4 125
Guangda [54] 1999 China Asian 1 20 1 109
Inamdar [56] 2000 India Asian 2 8 3 17
Kalix [57] 2001 Switzerland Caucasian 1 21 0 136
Hsieh [55] 2002 Taiwan Asian 1 19 16 252
Santos [89] 2002 Mexico Other 0 0 0 32
Zhang [51] 2003 China Asian 0 5 1 55
Xiang [50] 2003 China Asian 4 30 2 161
Liu [90] 2003 China Asian 1 47 3 193
Powell [91] 2003 UK Caucasian 4 41 4 210
Duman [92] 2004 Turkey Caucasian 1 11 2 81
Camsari [52] 2005 Turkey Caucasian 9 19 5 63
Leiva [93] 2005 Chile Other 0 12 4 133
Errera [94] 2006 Brazil Other 0 13 2 68
Morbois Trabut [95] 2006 France Caucasian 2 31 1 143
Singh [96] 2006 India Asian 1 4 2 78
Ilhan [97] 2007 Turkey Caucasian 4 9 0 77
Kwon [98] 2007 Korea Asian 0 13 3 63
Vaisi-Raygani [58] 2007 Iran Asian 2 29 2 77

Total 44 564 81 3683
% 0.8 10.5 1.5 67
African-American or Caucasian/Native-American). One study [48]
contained data for two distinct populations (Caucasians and His-
panics) and thus, it was included in the meta-analysis as two inde-
pendent studies. The information concerning all included studies
(first author, year of publication, country, racial descent of the pop-
ulation and sample size of cases and control for each genotype) is
presented in Table 1. Three studies were written in languages other
than English (two in Chinese and one in Spanish) [49–51] and
these were retrieved, translated and included in the analysis in or-
der to avoid the local literature bias [31].

The multivariate random-effects method [35] yielded a statisti-
cally significant OR equal to 1.17 for the contrast of E2/3 genotype
compared to the wild type E3/3 (95% CI 1.00–1.36, p-value = 0.049).
The ORs for the other E2-carriers genotypes (E2/2 and E2/4) com-
pared to E3/3 were also found to be of similar magnitude even
though did not reach statistical significance (Fig. 1). This should be
attributed mainly to the small sample sizes of these groups. We then,
proceeded by collapsing the genotypes and performing traditional
univariate meta-analyses using random-effects methods. The con-
trast of the E2 carriers vs. non-carriers yielded a significant estimate
(OR = 1.18, CI 1.02–1.35, p-value = 0.023). The allele-based contrasts
revealed also a statistically significant OR for the contrast of E2 allele
vs. the others (OR = 1.17, CI 1.03–1.33, p-value = 0.020). These re-
sults are presented in the forest plots of Figs. 2 and 3, respectively.
Thus, it is reasonable to assume that the E2 allele is an independent
risk factor for the development of T2DM.

In all of the analyses reported above, the heterogeneity was low
(I2 < 25%, p-value for heterogeneity > 0.15 in all cases), strengthen-
ing our beliefs concerning the validity of the results. Subgroup
analysis comparing the estimates found in different ethnic groups
revealed also no significant differences (p-values > 0.3 in all cases).
e year of publication, the country and the racial descent (Asian, Caucasian and other;
ericans) of the population and the genotypes for cases and controls.

Controls

E3/4 E4/4 Total E2/2 E2/3 E2/4 E3/3 E3/4 E4/4 Total

21 2 105 1 10 1 80 16 3 111
50 5 211 0 1 0 42 14 2 59

4 2 38 10 124 15 617 236 29 1031
9 0 42 0 20 0 76 20 0 116

17 0 94 0 8 0 66 17 0 91
44 2 254 2 64 7 711 169 11 964
52 3 436 3 43 3 257 51 7 364
95 10 455 2 35 4 414 111 10 576
55 7 281 2 35 4 414 111 10 576
26 0 116 6 88 19 382 150 14 659
50 5 235 4 29 5 332 74 2 446
20 8 86 0 9 2 76 33 5 125
34 1 177 0 25 0 181 42 3 251
31 4 166 1 7 2 53 7 2 72
16 14 60 1 9 2 10 8 10 40
36 2 196 0 37 0 205 50 0 292
20 6 314 0 4 1 126 13 6 150

3 1 36 1 2 1 10 8 0 22
12 1 74 1 23 1 134 31 1 191
50 8 255 1 10 1 75 17 3 107
53 1 298 0 4 2 64 11 0 81
50 7 316 2 7 1 57 21 0 88
13 4 112 0 12 3 62 16 1 94
21 7 124 14 27 9 97 19 5 171
43 1 193 0 10 3 87 39 0 139
12 0 95 0 7 0 77 23 0 107
33 0 210 5 71 14 294 87 10 481

5 0 90 1 7 0 74 13 2 97
18 0 108 0 4 0 40 2 0 46
14 1 94 0 5 0 70 12 1 88
35 7 152 1 86 2 381 83 9 562

942 109 5423 58 823 102 5564 1504 146 8197
.9 17.3 2 100 0.7 10 1.2 68 18.3 1.8 100



Fig. 1. Graphical representation of the results of the multivariate meta-analysis
concerning the comparison of the five genotypes to the wild type genotype E3/3
using the method proposed in [35]. The size of each symbol that represents an Odds
Ratio is inversely proportional to the variance of the corresponding log Odds Ratio.
Vertical lines represent the 95% CI.
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Using Begg’s test, the regression-based tests as well as by visual
inspection of the funnel plots (i.e. Fig. 4 for the E2 carriers) we
found no evidence for publication or other small-study-related bias
(p-values were >0.7 in most of the cases). The inspection of the
cumulative meta-analysis plots (Fig. 5 for the E2 carriers) showed
no evidence for trend of the effect estimates over time and the
same conclusions were drawn from the formal regression-based
statistical tests [45]. The analysis for deviations from HWE re-
vealed that the control groups of seven studies [52–58] and the
Hispanic population [48], deviated significantly from HWE. How-
Fig. 2. Forest plot for the results of the meta-analysis of E2 carriers compared to the oth
inverse-variance weights. The size of each symbol that represents a log Odds Ratio is inve
as for studies that were found in HWE are presented also. Horizontal lines represent th
ever, subgroup analysis comparing the studies that are on HWE
vs. the studies that deviate, revealed that the overall estimates
did not differ significantly (p-value = 0.932 for the E2 allele
comparison and p-value = 0.749 for the E2 carriers comparison).
Furthermore, studies that deviate from HWE did not differ signifi-
cantly (i.e. p > 0.4 in all situations) from those that did not, in a
number of measurable characteristics (year of publication, racial
descent of the included populations, minor allele frequency or total
sample size). Thus, HWE should not be considered as a factor influ-
encing the overall results.

The influential analysis revealed that no single study was
responsible for the overall significance of the estimates. After
removing each study and re-calculating the combined estimates,
in both the E2 allele comparison and the E2 carriers comparison
the overall estimates as well as their significance remained nearly
unchanged. Four of the included studies [53,59–61], were per-
formed by the same research group and in the materials and meth-
ods sections of the respective manuscripts, there was no evidence
whether the studies contained overlapping sets of individuals or
not. By excluding the four studies altogether and performing the
whole meta-analysis again for the E2 allele, the overall estimate
as well as its significance remained nearly unchanged (OR = 1.19,
CI 1.01–1.40, p-value = 0.028). We also performed a separate anal-
ysis excluding the five studies performed on mixed populations
since they could be sources of population stratification bias. Once
again the magnitude of the association and the statistical signifi-
cance were not altered (OR = 1.16, CI 1.01–1.33, p-value = 0.032
CI). Thus, in any case the overall conclusions drawn from our
meta-analysis remain unaffected.

Although not all studies reported separately summary data for
cases and controls concerning the biochemical parameters (TG,
TC, LDL and HDL), some useful insights could be obtained. For
er genotypes. The random-effects method of DerSimonian and Laird was used with
rsely proportional to its variance. Subgroup analyses of various ethnic groups as well
e 95% CI for each study.



Fig. 3. Forest plot for the results of the meta-analysis of E2 allele compared to the other alleles. The random-effects method of DerSimonian and Laird was used with inverse-
variance weights. The size of each symbol that represents a log Odds Ratio is inversely proportional to its variance. Subgroup analyses of various ethnic groups as well as for
studies that were found in HWE are presented also. Horizontal lines represent the 95% CI for each study.

Fig. 4. Funnel plot for the results of the meta-analysis of E2 carriers compared to
the other genotypes. Asymmetry of the plot indicates publication or other small
studies related bias. The results of the three formal tests for detecting such bias are
listed.

Fig. 5. Cumulative meta-analysis plot for the results of the meta-analysis of E2
carriers compared to the other genotypes. The studies are sorted by year of
publication. A slope significantly different from zero indicates time-trend related
bias. The regression-based test [45] indicated no such bias. Vertical lines represent
the 95% CI. The two regression lines, excluding the first study and including all
studies, nearly coincide.

P.G. Anthopoulos et al. / Molecular Genetics and Metabolism 100 (2010) 283–291 287
instance, TC levels in cases were higher compared to controls
(215 vs. 191 mg/dL, p-value = 0.015 based on 17 studies), TG
were also elevated (209 vs. 129 mg/dL, p-value = 0.003 based on
16 studies) whereas HDL was, as expected, elevated in controls
(43 vs. 48 mg/dL, p-value = 0.001 based on 13 studies). The differ-
ence in LDL levels was smaller in magnitude and did not reach
nominal statistical significance (130 vs. 121 mg/dL, p-va-
lue = 0.069 based on 12 studies). These results are in agreement
with previous estimates [28,29], even though in our case are
based on a large number of subjects. Using these study-level vari-
ables (for cases and controls, respectively) as covariates in a
meta-regression analysis [34] we failed to find a statistically sig-
nificant effect (Fig. 6). However, there was some weak evidence
that elevated TC and LDL levels in controls are associated with
reduced risk attributed to E2 allele (b = �0.0036, p = 0.28 and
b = �0.0037, p = 0.27, respectively), whereas increased HDL levels
in controls are associated with increased risk of the E2 allele
(b = 0.022, p = 0.18).



Fig. 6. The logOR for the contrast of E2 allele vs. others, plotted against Total Cholesterol, HDL, LDL and Triglyceride levels in controls in the left panel, and diabetic individuals
in the right panel. The size of each symbol that represents a log Odds Ratio is inversely proportional to its variance. We also list the coefficient obtained from the meta-
regression and the associated p-value.
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Discussion

To our knowledge this is the first meta-analysis which investi-
gates the association of Apolipoprotein E polymorphisms with
T2DM. Meta-analysis is a methodology suitable for dealing with
genetic-association studies concerning common, low penetrant
variants, since in the majority of the published cases, the risk asso-
ciated with a particular variant has been shown to be in the range
between 1.1 and 1.5 [62,63]. In such cases, the individual studies
are usually small and underpowered and thus, unable to provide
a definite answer even in the case where a true association exists.
Thus, meta-analysis can effectively combine data from several
studies increasing the statistical power (lower type II error rate).
An alternative, would be the design of large genetic-association
studies possessing the available statistical power to detect a prob-
able association [64]. The particular meta-analysis combined data
for more than 13,500 individuals from 30 studies, which is consid-
ered a rather large population sample [64] and it was sufficient in
order to provide statistically significant results. These results sug-
gest a rather moderate risk associated with the E2 allele and thus,
the meta-analysis presented here was able to detect it even if the
confidence interval’s lower bound is approaching unity in all anal-
yses. Some recently published genome-wide association studies
(GWAS) [65–67] as well as a meta-analysis [68] have been per-
formed on sample sizes comparable to the one presented here,
but they did not identify ApoE as a major risk allele for T2DM. This
however, is something expected since in the GWAS setting the
adjustment for multiple testing results in selecting only highly sig-
nificant markers (p < 10�7). On the contrary, for a meta-analysis
such as the one presented here which tests only a single marker,
a p-value < 0.05 is acceptable.

It is however widely known that bias may be introduced in a
meta-analysis pointing to an association that does not exist (type
I error). It should be mentioned at this point that every effort has
been performed to conduct appropriately the meta-analysis and
avoid any possible source of such bias. Quality scoring has not been
performed since it is considered subjective [32], non-English arti-
cles were identified, retrieved and included in the analysis in order
to avoid the local literature bias [31], deviations from the Hardy–
Weinberg equilibrium were properly assessed [46] and every
appropriate test for detecting publication bias or other small
study-related bias were performed [40,69]. Finally, the problem
of the early extreme estimates appearing in the meta-analysis of
genetic-association studies (the ‘‘Proteus phenomenon” or ‘‘win-
ner’s curse”) [44], that correlates with the replication validity of
studies in genetic epidemiology [70] was evaluated. The last two
forms of bias could severely bias the results of a meta-analysis
resulting in a false association; however, no such evidence was ob-
served in this work, strengthening further the validity of the results
presented here. Nevertheless, no indication of bias of any kind was
identified in this meta-analysis and more importantly, we found no
evidence of between-studies heterogeneity.

The exact biological mechanism that underlies this weak but
significant association is something that should be investigated.
As we already discussed in the introduction, several large meta-
analyses have documented that E4 is associated with increased risk
for CHD [20,21] and with ICD [22,23]. A previous meta-analysis has
shown that subjects carrying the E2 and E4 alleles had lower and
higher plasma total cholesterol levels compared to subjects carry-
ing the E3/3 genotype, respectively. Triglycerides concentrations
were significantly higher in E2/2, E2/3, E3/4 and E4/2 than in E3/
3 subjects. Concurrently, HDL cholesterol was significantly lower
in the E3/4 than in the E3/3 individuals [71]. In a recent large
meta-analysis, individuals carrying the E2/2 genotype had about
31% lower mean LDL than those with the E4/4 genotype [23].
The results of the present meta-analysis reveal a pattern for
T2DM risk that closely resembles the one found concerning triglyc-
erides concentrations (compare Fig. 1 of this article with Fig. 2 in
[23] as well as with Fig. 2 in [71]). Insulin resistance is strongly
associated with metabolic dyslipidemia and the correlations of li-
pid profiles with diabetic phenotypes is important, since T2DM pa-
tients have an atherogenic lipid profile, which greatly increases
their risk of CHD compared to people without diabetes. The largest
disparity in lipid levels among people with and without diabetes
occurs for HDL and triglycerides: triglycerides tend to be markedly
higher and HDL moderately lower in patients with diabetes, in con-
trast to the negligible difference observed in LDL and TC [28,29].
These results were largely confirmed by our meta-analysis (in
addition to these, the mean difference in TC was found to be also
significant different from zero). Additional evidence for this corre-
lation came from the ‘‘San Antonio Heart Study”, in which the car-
diovascular risk was determined in subjects who did not have
diabetes [72]. Those who developed diabetes during an 8 year fol-
low-up already had higher mean fasting insulin at baseline.
Although the differences in fasting glucose were comparatively
small between the two groups, they were accompanied by rela-
tively large differences in triglycerides and HDL levels [72]. More-
over, very interesting results on ApoE knock-out and knock-in mice
showed that ApoE has also an important role in peripheral energy
metabolism and consequently in metabolic syndrome and diabetes
[73]. Absence of ApoE reduces body weight and some of their obes-
ity-associated metabolic complications including impaired glucose
tolerance and insulin resistance [74,75]. Similar to humans, mice
expressing human E3 gain more body weight and adipose tissue
mass compared to mice with E4 when following a Western type
diet [76]. However, despite being leaner E4 mice begin to show
impairment of glucose tolerance earlier than E3 mice, mainly be-
cause adipocytes expressing E4 fail to buffer postprandial lipids
and glucose completely [76].

The meta-regression approach that we undertook provided
some weak evidence that TC, LDL and HDL levels mediate the risk
associated with the ApoE variants, even though the results did not
reach statistical significance (Fig. 6). However, the results of this
analysis are based on only a subset of the studies (12–17 out of
the 30 studies) and it is likely that the estimates are attenuated.
If complete data were available, perhaps the statistical significance
would be reached. Furthermore, meta-regression is prone to eco-
logical confounding [77] and there is an increased probability of
an inflation in the type I error rate when several covariates are
used, especially when dealing with a small number of studies as
is the case here [34,78]. These results may indicate that the genetic
effect is larger in studies conducted with control subjects that had
lower levels of TC and LDL and higher levels of HDL. After adjusting
for control subjects’ lipid levels, the association of E2 allele with
diabetes was no longer significant, suggesting that it may be med-
iated by its effect on lipid levels (TC, LDL and HDL). A similar obser-
vation has been reported for the associations of ENPP1 and PPARG
with diabetes, which seem to mediate their effects through
increasing Body Mass Index (BMI) [79,80].

These data are consistent with the view outlined above that cor-
relates Insulin resistance with metabolic dyslipidemia; however,
additional and more carefully designed studies are needed in order
to establish a more consistent view of these interrelations. For in-
stance, performing large genetic-association studies in T2DM pa-
tients and controls, stratified by their lipid profile (HDL, TG, TC
and LDL) will minimize the potential confounding by other factors
predisposing to components of the metabolic syndrome. Moreover,
the Mendelian randomization approach could also be used [81,82]
and the causal pathway could be evaluated in more detail. Such an
approach could not have been followed here since the included
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studies did not report the summary lipid levels stratified for each
genotype group. Thus, future studies that take into account the
findings of this work need to be performed in order to fully eluci-
date the biological mechanism of the proposed association.
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