Identification of a novel ‘aggregation-prone’/‘amyloidogenic determinant’ peptide in the sequence of the highly amyloidogenic human calcitonin

Vassiliki A. Iconomidoua, Aristeidis Leontisa, Andreas Hoengerb,1, Stavros J. Hamodrakas a,*

a Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
b University of Colorado at Boulder, Department of Molecular, Cellular and Developmental Biology, Boulder, CO 80309-0347, USA

Abstract

Calcitonin is a 32-residue polypeptide hormone, which takes part in calcium metabolism in bones. It may form amyloid fibrils. Amyloid fibrils are related with serious diseases known as amyloidoses. The amyloid form of calcitonin takes part in medullary thyroid carcinoma. A novel hexapeptide (6TCMLGT11) of human calcitonin was predicted as a possible ‘aggregation-prone’ peptide, which may play a role in amyloid formation. We investigated experimentally the ability of an analog of this hexapeptide (cysteine replaced by alanine, TAMLGT) to form amyloid fibrils utilizing TEM, X-ray fiber diffraction, ATR FT-IR spectroscopy, and polarized light microscopy. This peptide self-assembles into amyloid-like fibrils and fibrillogenesis is mediated via nuclei of liquid crystalline nature, known as spherulites.

1. Introduction

A great number of proteins and peptides with different functions and various structures are grouped together because of their ability to form ordered fibrillar aggregates, known as amyloid fibrils. These fibrils share distinct, common features: they bind Congo Red and display a characteristic yellow-green birefringence under polarized light [1], they are seen, utilizing electron microscopy, as uniform, straight or slightly curved, unbranched and of indefinite length fibrils, approximately 100 Å in diameter [2], and, finally they produce cross-β X-ray fiber diffraction patterns [3–5]. Amyloid fibrils are related to diseases, such as Alzheimer’s disease, atherosclerosis, cerebral amyloid angiopathy (Icelandic type), type II diabetes, medullary thyroid carcinoma, which are, collectively, called amyloidoses [6]. However, there are cases where certain proteins or peptides with an amyloid-forming potency play important functional roles in some organisms, including insects [4], bacteria [7] and even humans [8].

Calcitonin, a 32-amino acid polypeptide hormone [9] (Fig. 1), is produced in mammals by the C-cells of the thyroid gland and in lower vertebrates by the ultimobranchial body [10]. This hormone (hereinafter called also hCT from human Calcitonin) is involved in calcium-phosphorus metabolism [10]. Therefore, it is used as a drug to treat various bone disorders like postmenopausal osteoporosis [11], Paget’s disease [12] and also for short-term management of severe symptomatic hypercalcaemia [13]. It has been found that deposition of full-length calcitonin amyloid fibrils is associated with medullary thyroid carcinoma [14,15]. More specifically it has been proved that full-length calcitonin hormone and not an alternatively processed prohormone of calcitonin, forms amyloid in medullary thyroid carcinoma [16]. It has also been found that human calcitonin (hCT) may aggregate in vitro under specific incubation conditions. Many studies have been done about the mechanisms and kinetics of calcitonin fibrillation [17,18].

It has been shown that five residues corresponding to positions 15–19 of hCT (DFNKF) play an active role in oligomerisation and fibril formation by hCT in vitro [19], and Lys-18 and Phe-19 have been identified as key residues in both the bioactivity and self-assembly of hCT [20]. Attempts were also made to convert the highly amyloidogenic hCT into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic
2. Materials and methods

2.1. Peptide synthesis

The TAMLGT peptide was synthesized by GeneCust Europe, Luxembourg (purity >98%, free N- and C-terminals).

2.2. Formation of amyloid-like fibrils

The synthesized TAMLGT peptide was dissolved in doubly distilled water (pH 5.5), at a concentration of 15 mg ml\(^{-1}\). Mature amyloid-like fibrils were formed after 1–2 weeks incubation at ambient (room) temperatures, forming a fibril-containing gel. The fibrils were judged to be mature, observing preparations both for shorter and longer periods than 1–2 weeks. Oriented fibers, suitable for X-ray diffraction, were obtained from solutions of the peptide, containing mature amyloid-like fibrils as described below.

2.3. X-ray diffraction

A droplet (~10 µl) of mature fibril suspension was placed between two siliconized glass rods, spaced ~1.5 mm apart and mounted horizontally on a glass substrate, as collinearly as possible. The droplet was allowed to dry slowly at ambient temperature and humidity for 1 h to form an oriented fiber suitable for X-ray diffraction. X-ray patterns were obtained immediately from these fibers since it was found that fibers were drying and destroyed, after ~2 h under these conditions. X-ray diffraction patterns were recorded on a Mar Research 345 mm image plate, utilizing Cu K\(\alpha\) radiation (\(\lambda = 1.5418 \text{ Å}\)), obtained from a Rigaku MicroMax-007 HF, microfocus rotating anode generator (with Osmonic Rigaku Varimax\(\text{TM}\) HF optics), operating at 40 kV, 20 mA. The specimen-to-film distance was set at 150 mm and the exposure time was 30 min. No additional low angle reflections were observed at longer specimen-to-film distances, up to 300 mm. The X-ray patterns, initially viewed using the program MarView (MAR Research, Hamburg, Germany), were displayed and measured with the aid of the program IPDISP of the CCP4 package [25].

2.4. Negative staining

For negative staining, the TAMLGT peptide fibril suspensions were applied to glow-discharged 400 mesh carbon coated copper grids for 60 s. The grids were (occasionally) flash-washed with ~150 µl of distilled water and stained with a drop of 1% (w/v) aqueous uranyl acetate for 45 s. Excess stain was removed by blotting with a filter paper and the grids were air-dried. Pictures were acquired in a Philips CM120 BioTWIN electron microscope (FEI, Eindhoven, The Netherlands) operating at 100 kV. Digital acquisitions were made with a bottom-mounted Keen View 1K CCD camera (Soft Imaging System, Muenster, Germany).

2.5. Congo Red staining and polarized light microscopy

TAMLGT fibril suspensions were applied to glass slides and stained with a 10 mM Congo Red (Sigma) solution in phosphate-buffered saline (pH 7.4) for approximately 2 h. They were then washed several times with 90% ethanol and left to dry. The samples were observed respectively, both under bright field illumination and between crossed polars using a Leica MZ75 polarizing stereo-microscope equipped with a JVC GC-X3E camera.

2.6. Attenuated total reflectance Fourier-transform infrared (ATR FT-IR) spectroscopy and post-run computations of the spectra

Ten microliter drops of the TAMLGT peptide suspension (Section 2.2) were cast on flat stainless-steel plates, coated with an ultra thin hydrophobic layer (SpectRIM, Tienta Sciences, Inc. Indianapolis, USA) and left to air-dry slowly at ambient conditions to form thin films. IR spectra were obtained from these films, at a resolution of 4 cm\(^{-1}\), utilizing an IR microscope (IRScope II, Bruker Optik GmbH, Ettlingen, Germany), equipped with a Ge ATR objective lens (20\(^{-}\)) and attached to a FT-IR spectrometer (Equinox 55, Bruker Optik GmbH, Ettlingen, Germany). Ten 32-scan spectra were collected from each sample and averaged to improve the S/N ratio. Internal reflection spectroscopy has several advantages compared to the more common KBr dispersion technique [26]. The choice of ATR was dictated by the need to exclude any possible spectroscopic and chemical interactions between the sample and the dispersing medium. Having a penetration depth of less than 1 µm (1000 cm\(^{-1}\), Ge), ATR is free of saturation effects, which may be present in the transmission spectra of thicker samples. The spectra were corrected for the effect of wavelength on the penetration depth (p.d. \(\propto \lambda\)). The corresponding effect of the (frequency-dependent) refractive index (n) of the samples was not taken into account due to the lack of relevant data.

The infrared ATR band maxima were determined from the minima in the second derivative of the corresponding spectra. Derivatives were computed analytically using routines of the Bruker
OPUS/OS2 software and included smoothing by the Savitsky-Golay algorithm [27] over a ±8 cm$^{-1}$ range, around each data point. Smoothing over narrower ranges resulted in a deterioration of the signal-to-noise ratio and did not increase the number of minima that could be determined with confidence.

2.7. Crystalization experiments and polarized light microscopy

Quantities of freshly made peptide solutions in distilled water (concentration 1 mg ml$^{-1}$, pH 5.5) were tested in crystallization experiments, using the “hanging-drop” method, for the possible formation of crystals. The precipitant was (NH$_4$)$_2$SO$_4$ (concentration varied from 1.0 to 2.0 M). The samples were observed, both under bright field illumination and between crossed polars, respectively, using a Leica MZ75 polarizing stereomicroscope equipped with a JVC GC-X3E camera.

3. Results and discussion

The synthesized peptide (TAMLGT) self-assembles into amyloid-like fibrils, after 1–2 week incubation in distilled water (see Section 2) and forms a fibril-containing gel. The fibrils were judged to be amyloid-like from their tinctorial and structural characteristics. Transmission electron microscopy (negative staining) shows that the fibrils are straight, unbranched and of indeterminable length (Fig. 2A and B). Each fibril/protofilament is about 40–50 Å in diameter. Non-twisted ribbons/tapes were observed, as a result of lateral interactions between multiple protofilaments. Similar ribbons/tapes have been observed in amyloid fibrils from human calcitonin [18]. The similarity is astonishing and it might imply that this peptide plays a crucial role in human calcitonin fibrillation. Future attempts for preventing hCT fibrillation and producing more effective drugs, should perhaps target this region of the molecule. While preparing peptide solutions, gels were quickly formed, implying the existence of interacting amyloid fibrils (data not shown).

Fibers of TAMLGT fibrils give an X-ray diffraction pattern (Fig. 3), which closely resembles the typical “cross-$eta$” patterns taken from oriented amyloid fibers. However, the X-ray diffraction pattern is not a typical “cross-$eta$” pattern since it shows rings instead of oriented reflections at the meridian and the equator, this, indicates a powder-like pattern of a polycrystalline material. Nevertheless, it can easily be explained by looking at the EM photographs of Fig. 2, assuming that the ribbons of the fibrils, adopt all possible orientations, despite our attempts to obtain an oriented fiber. A full explanation of the diffraction pattern is given in the text, with a table of the d-spacings of the diffraction rings and a proposed unit cell for the polycrystalline fiber (Table 1).

4.57 Å and 10.9 Å reflections are seen. The 4.57 Å reflection corresponds to the spacing of adjacent beta-strands (which should be perpendicular to the fiber axis, and, consequently, the reflection perpendicular to the meridian, in a typical “cross-$eta$” structure), and the 10.9 Å spacing, which corresponds to the face-to-face separation (packing distance) of the β-sheets. Graphs of Fig. 2, assuming that the ribbons/tapes of the fibrils, adopt all possible orientations in our attempts to obtain an oriented fiber. A full explanation of the diffraction pattern is given in the legend to Table 1, with a table of the d-spacings of the diffraction rings and a proposed unit cell for the polycrystalline fiber.

Fig. 2. Electron micrographs (A & B) of mature TAMLGT peptide amyloid-like fibrils, derived after 1–2 weeks of incubation. The fibrils are seen to assemble laterally to form ribbons, in many ways reminiscent of the fibrils and ribbons formed by the entire calcitonin molecule [18]. The similarity in size of the fibrils and appearance of the ribbons is, indeed, intriguing. The samples were negatively stained with 1% uranyl acetate. Arrows show the width of a fibril (40–50 Å). Bar 200 nm.

Fig. 3. X-ray diffraction pattern from an oriented fiber (F) of TAMLGT peptide amyloid-like fibrils. The meridian, M (direction parallel to the fiber axis) is horizontal and the equator, E, is vertical, in this display. The X-ray diffraction pattern is not a typical “cross-β” pattern since it shows rings instead of oriented reflections at the meridian and the equator. This, indicates a powder-like pattern of a polycrystalline material. Nevertheless, it can easily be explained by looking at the EM photographs of Fig. 2, assuming that the ribbons of the fibrils, adopt all possible orientations, despite our attempts to obtain an oriented fiber. A full explanation of the diffraction pattern is given in the text, with a table of the d-spacings of the diffraction rings and a proposed unit cell for the polycrystalline fiber (Table 1).
Nevertheless, the typical to a “cross-β” structure, 4.57 Å and 10.9 Å reflections are seen. The structural repeat of 4.57 Å along the fiber axis corresponds to the spacing of adjacent β-strands (which should be perpendicular to the fiber axis, in a typical “cross-β” structure) and the 10.9 Å spacing, which corresponds to the face-to-face separation (packing distance) of the β-sheets, parallel to the fiber axis in typical cross-β patterns.

The ATR FT-IR spectrum of the TAMLGT peptide fibrils, cast as a thin-hydrated film, is shown in Fig. 4. The spectrum shows a prominent band at 1628 cm\(^{-1}\) in the amide I region and the amide III band at 1234 cm\(^{-1}\), which are both definitely due to β-sheet conformation [28–32]. The amide I, high wavenumber component at 1693 cm\(^{-1}\) is a strong indication that the β-sheets are antiparallel [29–32]. In proteins containing antiparallel β-sheets, a high frequency β-sheet component that arises from transition dipole coupling is usually found 50–70 cm\(^{-1}\) higher than the main β-sheet component [31]. Other ATR FT-IR bands and their tentative assignments are shown in Table 2. Thus, the results from ATR FT-IR spectroscopy strongly support the evidence from X-ray diffraction.

Also, the fibrils formed from the TAMLGT peptide, bind the dye Congo Red showing the characteristic green-yellow/green birefringence when viewed under crossed polars in a polarizing microscope (Fig. 5).

Immediately after dissolving the peptide TAMLGT in distilled water or during our attempts to crystallize it (see Section 2), having seen from the X-ray diffraction experiments that it has a polycrystalline texture, it was found that the peptide spontaneously assembles into supramolecular spherical structures, after 1–2 h incubation, under a great variety of conditions. These structures, when viewed in a polarizing microscope under crossed polars, are seen to have a liquid crystalline texture. They are spherulites

Table 1
Spacings (d\(_{\text{obs}}\)) of the reflections observed in the X-ray diffraction pattern, taken from a fiber of the \(^{2}\)TAMLGT\(^{11}\) peptide amyloid-like fibrils (Fig. 3). Indexing (h, k, l, d\(_{\text{obs}}\), d\(_{\text{calc}}\)) was done, utilizing DICVOL06 [38], a software for the automatic indexing of powder diffraction patterns by the successive dichotomy method, based on an orthorhombic unit cell, with unit cell parameters: a = 18.30 ± 0.02 Å, b = 18.53 ± 0.01 Å, c = 21.79 ± 0.01 Å; \(\alpha = 90^\circ\), \(\beta = 90^\circ\), \(\gamma = 90^\circ\). This unit cell has a volume, Vol = 7386.96 ± 0.02 Å\(^3\) and it is estimated to contain 8 molecules of TAMLGT, together with 8 associated water molecules.

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>d(_{\text{obs}}) (Å)</th>
<th>d(_{\text{calc}}) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10.90</td>
<td>10.89</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8.20</td>
<td>8.20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7.25</td>
<td>7.26</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6.58</td>
<td>6.58</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5.45</td>
<td>5.44</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5.45</td>
<td>5.45</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5.45</td>
<td>5.45</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4.96</td>
<td>4.96</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4.57</td>
<td>4.57</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4.10</td>
<td>4.10</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3.87</td>
<td>3.87</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3.51</td>
<td>3.51</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>3.30</td>
<td>3.30</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2.72</td>
<td>2.72</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2.72</td>
<td>2.72</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
<td>2.40</td>
<td>2.40</td>
</tr>
</tbody>
</table>
with “Maltese crosses”. The spherulites appear to have diameters ranging from 10 to 200 μm (Fig. 6A and B).

These liquid crystalline structures can be found in many other amyloid-fibril forming proteins [24,33–36]. Thus, amyloid fibrillogenesis proceeds via spherulites for proteins and peptides involved in functional amyloids like silkmoth chorion and spider silk and pathological amyloids (Aβ42 involved in Alzheimer’s disease [24,35 and references therein] and for insulin, albumin, β-lactoglobulin and pro-IAPP [34–36 and references therein]. Spherulites have also been found in vivo, in the hippocampal tissue, in Alzheimer’s disease [33]. Therefore, it is tempting to assume that amyloid fibrillogenesis proceeds, in several cases via intermediates of liquid crystalline nature, a fact initially recognized by our team findings [24] and that, in several cases, the pre-fibrillar amyloid intermediates, important for the pathogenicity in amyloidoses are, indeed, these spherulitic structures.

At this point, it is perhaps interesting to draw attention to the relation of spherulites (as ordered domains of hydrogels) to the general theory of formation of hydrogels, which may be formed by different types of synthetic polymers [37 and references therein]. A full understanding of the process that leads from spherulites to amyloid fibrils, is likely to lead not just to advances in our understanding of amyloid diseases and the formation of functional amyloids, but also to a fundamental understanding of assembly characteristics, for possible exploitation in the generation of novel biomaterials and in nanotechnology.

Our future attempts (in progress) will be focused to produce more soluble/effective variants of hCT, designing non-fibrillating mutants of calcitonin, by performing mutations in this part of hCT, involving this peptide.

Acknowledgements

We should like to thank Peter Everitt for excellent technical assistance and continuous unfailing help and EMBL, Heidelberg for hospitality. We thank the University of Athens for support. We also thank the Cooperation 2011 program (11SYN_1_1230) of the General Secretariat for Research and Technology of the Greek Ministry of Education and Religious Affairs, Culture and Sports, under the NSRF 2007–2013, for financial support. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

References

