An N-terminal pro-atrial natriuretic peptide (NT-proANP) 'aggregation-prone' segment involved in isolated atrial amyloidosis

Nikolaos N. Louros a, Vassiliki A. Iconomidou a, Paraskevi L. Tsiolaki a, Evangelia D. Chrysina b, Georgios E. Baltatzis c, Efstratios S. Patsouris c, Stavros J. Hamodrakas a,*

a Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
b Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35, Greece
c 1st Department of Pathology, Medical School, University of Athens, 75 Mikras Assias, Goudi 115 27, Greece

* Corresponding author. Fax: +30 210 7274254.
E-mail address: shamodr@biol.uoa.gr (S.J. Hamodrakas).

Abstract

Isolated atrial amyloidosis (IAA) is a common localized form of amyloid deposition within the atria of the aging heart. The main constituents of amyloid fibrils are atrial natriuretic peptide (ANP) and the N-terminal part of its precursor form (NT-proANP). An 'aggregation-prone' heptapeptide (114KLRALLT) was located within the NT-proANP sequence. This peptide self-assembles into amyloid-like fibrils in vitro, as electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy and Congo red staining studies reveal. Consequently, remedies/drugs designed to inhibit the aggregation tendency of this 'aggregation-prone' segment of NT-proANP may assist in prevention/treatment of IAA, congestive heart failure (CHF) or atrial fibrillation (AF).

Keywords:
Natriuretic peptide
N-terminal pro-atrial natriuretic peptide (NT-proANP)
Amyloid fibril
Isolated atrial amyloidosis (IAA)
Cardiac amyloidosis

1. Introduction

Several soluble proteins and peptides have the ability to aggregate under certain conditions into higher-order fibrillar structures known as amyloid fibrils [1,2]. Deposition of amyloid fibrils in various tissues and organs has been associated with a variety of pathological conditions termed amyloidoses [3]. This diverse group of conformational diseases includes, amongst others, a number of neurodegenerative disorders (such as Alzheimer's, Parkinson's and Huntington's), prion diseases, type II diabetes, several cases of carcinomas (e.g. medullary carcinoma, prostatic carcinoma or insulinoma), heart conditions (cardiac amyloidoses), etc. [4].

Amyloid deposition in the elderly heart is an ordinary finding [5]. Cardiac amyloidosis is divided into two distinct types, a systemic and a localized form. The first type, designated as senile systemic amyloidosis (SSA), is associated with the formation of amyloid fibrils, derived from transthyretin (TTR), mainly in the cardiac ventricles [6]. The second type, called isolated atrial amyloidosis (IAA), involves the localized deposition of amyloid fibrils in the atria of the aging heart [7]. As an age related condition, it frequently appears after the fourth decade and prevails in higher age groups (>80–85% in ages above 80 years) [8], showing a predisposition for females [9]. Experimental evidence and clinical studies have indicated an increased frequency associated with different cardiac diseases, such as congestive heart failure (CHF), atrial fibrillation (AF) and atrial thromboembolism [10,11]. Additional clinical effects of amyloid deposits in the heart atria involve, apart from cardiac failure, several rhythm disturbances [12], deriving from damaged diastolic function due to the mechanical disturbance of myocyte movement by the diffuse deposition of amyloid [13].

Atrial natriuretic peptide (ANP) has been identified as the primary component of IAA amyloid fibrils [14]. However, immunohistochemical studies have also signified the presence of the N-terminal remnant of its precursor form, 1–88proANP and Brain Natriuretic Peptide (BNP) [14,15]. It is expressed and stored in cytoplasmic granules of the myocyte cells of the cardiac atria. The major stimulant for ANP release is atrial wall stretch as an after-effect of increased intravascular volume [16]. The human pre-proANP precursor, containing a hydrophobic signal peptide (residues 1–25), is cleaved to form the 126 amino acid long proANP precursor (Fig. 1). ProANP undergoes further cleavage by a specific

Abbreviations: NT-proANP, N-terminal pro-atrial natriuretic peptide; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; IAA, isolated atrial amyloidosis; SSA, senile systemic amyloidosis; TTR, transthyretin; CHF, congestive heart failure; AF, atrial fibrillation; cGMP, cyclic guanosine monophosphate; ATR FT-IR spectroscopy, attenuated total reflectance Fourier-transform spectroscopy

http://dx.doi.org/10.1016/j.febslet.2013.10.049
cardiac serine protease called corin, immediately after secretion, resulting in the production of the final mature 1–28ANP product, a 28 amino acid long hormone and the N-terminal remnant 1–98-proANP (hereinafter called NT-proANP) [17].

The exact biological role of ANP still remains unclear. After secretion in the plasma, ANP contributes in the control of circulating blood volume [18]. Moreover, it binds to guanylyl-cyclase ANP-receptors, located in various organs, such as the brain, blood vessels, kidney and adrenal glands, activating cGMP cascade pathways [19]. ANP is rapidly cleared from the blood stream by binding to type C ANP receptors and neutral endopeptidases, both located in the kidney and blood vessels [20]. NT-proANP has a longer half-life than ANP [21] and even though its exact biological function is not determined yet, it has been suggested as a biological marker for left ventricular dysfunction [22].

Detailed theoretical and experimental evidence has repeatedly indicated that amyloid formation is mediated by specific short sequence regions/stretches of a polypeptide chain that have a higher aggregation propensity and therefore vitally contribute to its aggregation tendency [23,24]. In this work, we determine a novel aggregation-potent segment of NT-proANP, 114KLRALLT120, which was initially predicted as such, by implementing AMYLPRED, our aggregation propensity algorithm [25]. This aggregation-prone peptide segment was synthesized (see Section 2) and here we present experimental results, verifying its strong aggregation propensity to form amyloid fibrils. It should be mentioned at this point that, a distantly homologous peptide, KMVLYTL, has also been determined to possess a strong aggregation propensity in the sequence of the N-terminal pro-brain natriuretic peptide (NT-proBNP) [26]. An analysis of the physico-chemical properties of both peptides is provided (see Supplementary Table 1 and Fig. S1) [27]. Also, we discuss our findings, implicating NT-proANP as one of the main the driving forces in IAA fibril formation, providing a novel target for IAA prevention/prohibition.

2. Materials and methods

2.1. Prediction of potential aggregation prone peptides in NT-proANP and peptide synthesis

Our prediction algorithm AMYLPRED, a consensus prediction tool of potential ‘aggregation-prone’ peptides (freely accessible to academic users at http://biophysics.biol.uoa.gr/AMYLPRED) [25], was implemented on the amino acid sequence of the 1–151ANP pre-hormone. As a result, a segment of NT-proANP, with high aggregation propensity was predicted (see Fig. 1). This heptapeptide, KLRLALL (nominal positions 114–120), is located close to the C-terminal region of NT-proANP (Fig. 1). The NT-proANP heptapeptide-analogue KLRLALL was synthesized by GeneCust Europe, Luxembourg (purity >98%, free N- and C-terminals).

2.2. Formation of amyloid-like fibrils

The synthesized NT-proANP heptapeptide-analogue, KLRLALL, was dissolved in distilled water (pH 5.75), at a concentration of 15 mg ml⁻¹. After an incubation period of 1–2 weeks, mature amyloid-like fibril containing gels were formed. However production of oriented fibers, suitable for X-ray diffraction, were obtained from solutions of higher concentration of the peptide, containing mature amyloid-like fibrils as described below.

2.3. X-ray fiber diffraction

The NT-proANP heptapeptide-analogue, KLRLALL, was dissolved in distilled water (pH 5.75) at a concentration of 20 mg ml⁻¹ to produce mature amyloid-like fibrils, after 1–2 weeks incubation, forming a fibril-containing gel. A droplet (10 μl) of the fibril containing solution was placed between two aligned siliconized glass rods (spaced 2 mm apart). The droplet was allowed to dry slowly at ambient temperature and humidity, for 1 h, to form an oriented fiber suitable for X-ray diffraction. The X-ray diffraction pattern was collected, using a SuperNova-Agilent Technologies X-ray generator equipped with a 135-mm ATLAS CCD detector and a 4-circle kappa goniometer, at the Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (CuKα, high intensity X-ray micro-focus source, λ = 1.5418 Å), operated at 50 kV, 0.8 mA. The specimen-to-film distance was set at 117 mm and the exposure time was set to 180s. The X-ray pattern, initially viewed using the program CrysAlisPro [28] was displayed and measured with the aid of the program iMosFLM [29].

2.4. Congo red staining and polarized light microscopy

Fibril suspensions of the peptide solution were applied to glass slides and were air-dried at ambient temperatures and humidities. The film produced, containing amyloid-like fibrils, was stained...
with a 1% Congo red solution in distilled water (pH 5.75) for 20 min [30]. Excess stain was removed through tap water washes [30]. The samples were observed under bright field illumination and between crossed polars, using a Leica MZ75 polarizing stereomicroscope equipped with a JVC GC-X3E camera.

2.5. Negative staining

For negative staining, a drop (~5 µl) of the fibril containing solutions of the KLRALLT peptide was applied to glow-discharged 400-mesh carbon-coated copper grids, for 60 s. The grids were flash-washed with distilled water and stained with a drop of 2% (w/v) aqueous uranyl acetate for 60 s. Excess stain was removed by blotting with a filter paper. The fibril containing grids were initially air-dried and examined with a Morgagni™ 268 transmission electron microscope, operated at 80 kV. Digital acquisitions were performed with an 11 Mpixel side-mounted Morada CCD camera (Soft Imaging System, Muenster, Germany).

2.6. Attenuated total reflectance Fourier-transform infrared spectroscopy and post-run spectra computations

A 10-µl drop of the fibril containing solution of the NT-proANP heptapeptide-analogue was cast on a front-coated Au mirror and left to dry slowly at ambient conditions to form a thin film. IR spectra were obtained at a resolution of 4 cm⁻¹, utilizing an IR microscope (IRScope II, BrukerOPTICS, Bruker Optik GmbH, Ettlingen, Germany), equipped with a Ge ATR objective lens (20×) and attached to a FT-IR spectrometer (Equinox 55, BrukerOPTICS). Ten 32-scan spectra were collected from each sample and averaged to improve the S/N ratio. All spectra are shown in the absorption mode, after correction for the wavelength-dependence of the penetration depth (d, analogous λ). Derivatives were computed analytically using routines of the Bruker OPUS/OSS2 software including smoothing over a 48 cm⁻¹ range around each data point, performed by the Savitsky–Go1ay algorithm [31]. Smoothing over narrower ranges resulted in deterioration of the S/N ratio and did not increase the number of minima that could be determined with confidence. The minima in the second derivative were used to determine the corresponding absorption band maxima.

3. Results

After incubation for 1–2 weeks, the KLRALLT peptide self-assembles into amyloid-like fibrils (Fig. 2a and b), forming gels. Electron micrographs display the amyloid-like fibrils to be straight and unbranched with an indefinite length (several microns long) and a diameter of approximately 50–60 Å (Fig. 2a). Frequently, the fibrils coalesce laterally and in register forming ribbons, varying in diameter (Fig. 2b). This apparent morphological polymorphism has previously been established as a common characteristic of amyloid-like fibrils formed by several aggregation-prone peptides or proteins [32]. Furthermore, the presence of supramolecular spherical structures (Fig. 2a, arrows) signifies the possibility that the KLRALLT peptide self-assembles, initially forming spherulites. Spherulites have been associated with early amyloid fibrillogenesis events, for several proteins involved in the formation of functional [33] or pathological amyloids, as possible pre-fibrillar amyloid intermediates and are implicated with the cytotoxicity mechanisms of amyloidoses [34,35].

The X-ray diffraction pattern produced by an oriented fiber, formed by solutions containing amyloid-like fibrils from the peptide KLRALLT, resembles a typical “cross-β” architecture that amyloid fibrils adopt (Fig. 3) [36,37]. Specifically, a strong reflection at 4.7 Å is attributed to the interchain distance between hydrogen bonded β-strands. Furthermore, the spacing at 11.9 Å is ascribed to the packing distance between packed β-sheets. However, there is no preferential orientation of these two reflections along the meridian or the equator of the X-ray diffraction pattern, as in a typical cross-β pattern, implying that the amyloid-like fibrils adopt all possible orientations in the fiber (which is not really oriented!).

Complementary experimental evidence produced by the ATR FT-IR (1500–1800 cm⁻¹) spectrum of the KLRALLT peptide, supports the presence of an antiparallel β-sheet conformation for this peptide, in agreement to the results obtained from X-ray diffraction (Fig. 4). Particularly, the spectrum displays a strong amide I band at 1624 cm⁻¹, due to the preponderance of β-sheet.
supported by the amide II band at 1535 cm\(^{-1}\) [38–40]. Moreover, the additional component at 1693 cm\(^{-1}\), in the amide I band, is probably an indication that the β-sheets are antiparallel (Table 1) [38–40]. Proteins containing antiparallel β-sheets usually exhibit a high frequency β-sheet component that arises from transition dipole coupling, typically located 50–70 cm\(^{-1}\) higher than the main β-sheet band [40]. The detailed spectrum, in the region 1100–1800 cm\(^{-1}\), is also provided (Supplementary Table 2 and Fig. S2).

Amyloid-like fibrils have been shown to bind the stain Congo red [41]. Films produced by the fibril containing peptide KLRALLT solutions were initially stained by the characteristic for amyloid fibrils Congo red dye (see Section 2) and then were studied under a polarizing microscope. Amyloid deposits composed of KLRALLT amyloid-like fibrils bind Congo red, as observed under bright field illumination (Fig. 5a) and exhibit the characteristic for amyloid fibrils apple/green birefringence when viewed under crossed polars (Fig. 5b).

4. Discussion

Amyloids arise from self-aggregating proteins or peptides with diverse functional properties, different amino acid sequences and structural characteristics. A growing number of such proteins and peptides have been found to form amyloid fibrils, both in vitro and in vivo, supporting early observations, which led to the concept that, every protein may adopt both a globular and a fibrillar structure under appropriate conditions [42]. Several studies, both theoretical and experimental, have shown that self-aggregating proteins contain potent aggregation-prone segments within their native sequence [23,25,43]. Such aggregation-prone peptide regions have been proposed to act as templates for amyloid fibril formation after protein structural rearrangements [25]. An impressive genome–wide survey revealed that most proteins contain at least one peptide region with such a high aggregation tendency [43].

The KLRALLT peptide was predicted as a potential aggregation-prone peptide segment of NT-proANP by the AMYLpred algorithm [25]. Our experimental results, presented here (see Section 3), indeed verify that this peptide-analogue self-assembles forming amyloid-like fibrils, which satisfy all the basic criteria for amyloids [41]. Apparently, NT-proANP has an inherent ability to form amyloid fibrils, mainly due to the KLRALLT peptide, in support to previous immunohistochemical data indicating its presence in amyloid deposits of heart atria [15]. Several polypeptide hormones have been identified in both mature and precursor states in amyloid fibrils [44]. Our data corroborate this concept adding ANP and NT-proANP as another hormone-prehormone amyloid fibril formation case.

Previous experimental studies have indicated that ANP polymerization into amyloid fibrils is a nucleation dependent process [45,46]. However, mature ANP has a substantially higher aggregation tendency once seeded [10,45,46]. Therefore, it is possible that pre-fibrillar aggregates are actually formed by NT-proANP, driven by the aggregation propensity of the KLRALLT peptide introducing a nucleation effect for ANP polymerization into amyloid fibrils. This may also explain why, although ANP is the predominant component in amyloid fibrils of the atria, NT-proANP is also found as a secondary supporting component [15]. Further, more refined, experimental work is needed to verify this hypothesis.

![Fig. 4. ATR FT-IR spectrum](image)

Table 1

<table>
<thead>
<tr>
<th>Bands (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1535</td>
<td>β-Sheet (amide II)</td>
</tr>
<tr>
<td>1624</td>
<td>β-Sheet (amide I)</td>
</tr>
<tr>
<td>1666</td>
<td>TFA</td>
</tr>
<tr>
<td>1693</td>
<td>Antiparallel β-sheet</td>
</tr>
</tbody>
</table>

Elegant theoretical and experimental work by Richards and co-workers, more than a decade ago, indicated the presence of a coiled–coil motif region (a region capable of forming a superhelix of α-helices), close to the N-terminal of NT-proANP (as seen by the underlined hydrophobic residues in Fig. 1), suggesting that NT-proANP oligomerization may occur via these coiled–coil motifs of hydrophobic residues [47]. Therefore, an alternative approach may involve NT-proANP forming early oligomers through coiled-coils and further polymerizing into atrial amyloid fibrillar structures, as a result of the self-aggregation potential of the KLRALLT aggregation prone peptide. A similar process has recently been proposed to occur for the NT-proBNP natriuretic pro-hormone [26].

It is not clarified yet why polypeptide hormones form amyloid fibrils in vivo. Abnormal high concentrations of the polypeptide, close to the hormone secretion site, result in the formation of amyloid deposits in most localized amyloidoses conditions [10]. NT-proANP has a significantly longer half-life compared to ANP [21]. Consequently, it is found in correspondingly higher concentrations both in plasma and heart atria. Additionally, ANP and NT-proANP...
secretion is reported higher in patients with heart conditions, such as congestive heart failure or atrial fibrillation [9]. As a result, high secretion is reported higher in patients with heart conditions, such as congestive heart failure or atrial fibrillation [9].

Acknowledgements

We thank the University of Athens and the National Hellenic Research Foundation for support. We thank Maria Karamolegou for expert technical assistance and our collaborators Drs. Georgios Chryssikos and Vassilis Gionis from the Theoretical and Physical Chemistry Institute of the National Hellenic Research Foundation for help with the ATR FT-IR experiments. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2013.10.049.

References

[6] We thank the University of Athens and the National Hellenic Research Foundation for help with the ATR FT-IR experiments. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2013.10.049.

References

[6] We thank the University of Athens and the National Hellenic Research Foundation for help with the ATR FT-IR experiments. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2013.10.049.

References

[6] We thank the University of Athens and the National Hellenic Research Foundation for help with the ATR FT-IR experiments. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2013.10.049.

References

[6] We thank the University of Athens and the National Hellenic Research Foundation for help with the ATR FT-IR experiments. We should also like to thank the editor of this manuscript for properly handling it and the anonymous reviewers for useful and constructive criticism.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2013.10.049.
Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B. and Blake, C.C. (1968) Cross-beta

