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ABSTRACT 
 

Monoclonal antibodies (mAbs) represent the most promising and rapidly growing class of 
therapeutic compounds for treating a wide variety of human chronic and acute diseases.  Despite 
their benefits, a major drawback in the exploitation of antibodies is their tendency to form 
aggregates.  As a result, severe immunological reactions in patients have been recorded. 
In this study, we investigated the susceptibility of a set of therapeutic monoclonal antibodies to form 
aggregates. We selected antibodies that have all been approved by the U. S. Food and Drug 
Administration and are indicated for the treatment of various types of cancer and autoimmune 
diseases. The AMYLPRED 2 consensus method was used to predict ‘aggregation-prone’ regions 
on the surface of these proteins. 
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These regions are conserved and observed in almost all monoclonal antibodies commercially 
available. Considering the amino acid sequences of these antibodies, common groups of 
‘aggregation-prone’ regions were identified, called clusters. We successfully reduced or even fully 
eliminated ‘aggregation-prone’ groups (clusters) by specific ‘mutations’ of the amino acids with 
exposed side chains. This information may be useful in future studies of monoclonal antibodies by 
improving existing therapeutic products or by designing novel ones.  
 

 
Keywords: Aggregation-prone regions; monoclonal antibodies; aggregation propensity; cancer; 

autoimmune diseases. 
 
ABBREVIATIONS 
 

mAbs,  Monoclonal Antibodies;  CDRs,  Complementarity Determining Regions;  FDA, U.S. Food and 
Drug Administration; L1, Light chain CDR1; L2, Light chain CDR2; L3, Light chain CDR3; H1, Heavy 
chain CDR1; H2, Heavy chain CDR2; H3, Heavy chain CDR3. 
 
1. INTRODUCTION 
 
Monoclonal antibodies (mAbs) are tetramers of 
two identical pairs of polypeptide chains, the 
heavy and the light chains [1]. The light chain 
consists of one variable and one constant 
domain and the heavy chain consists of one 
variable and three or more constant domains [1].  
All the domains have a similar tertiary structure 
called immunoglobulin fold, which is 
characterized by two anti-parallel beta sheets [2].  
The antigen-binding site consists of six loops, 
three from the light chain and three from the 
heavy chain [3]. These loops are also known as 
complementarity determining regions (CDRs) 
and they are responsible for the recognition and 
the binding between antibody and antigen [4]. 
 
Given almost any substance, it is possible to 
produce monoclonal antibodies that specifically 
bind to it [5]. MAbs are made by identical 
immune cells that are clones of a unique parent 
B-cell, have monovalent affinity, bind to the same 
epitope and can be reproduced endlessly in vitro 
[6]. 
 
They are used in treatment schemes for 
autoimmune [7], cardiovascular [8] and infectious 
diseases [9], cancers [10,11] and others. They 
can also be used as diagnostic [12] and 
biotechnological tools [13].  
 
Monoclonal antibodies in high concentrations, in 
their storage and usage, form aggregates [14], 
which are an increasing concern in therapeutic 
development.  Protein aggregation causes side 
effects and immunogenic responses in clinical 
trials [15]. Aggregates may also result in 
reduction of antibody therapeutic activity, while 
severe immunological reactions in patients have 

been recorded [16]. Thus, it is important to 
understand the aggregation mechanisms of 
mAbs under different circumstances [17] and 
their potential biological implications in the 
pharmaceutical industry in order to improve              
their efficacy and make them successful 
biopharmaceutical products [18]. 
 
Several computational studies have been carried 
out and a variety of monoclonal antibodies have 
been extensively studied and engineered [19]. A 
number of computational tools are also available 
[20] to predict aggregation-prone regions in 
therapeutic proteins. These tools focus on 
predicting the aggregation-prone regions (small 
peptides) and finding the potential sequence and 
structure factors that contribute toward 
aggregation formation in proteins [21]. As a 
result, a number of monoclonal antibodies have 
been improved, used again and for other cases 
too.  
 
Taking into account all these insights, our 
purpose was to propose novel models of 
therapeutic monoclonal antibodies with optimized 
aggregation propensity, based on an amino acid 
substitution approach. Our findings can be 
applied on rational design of novel therapeutic 
candidates or improvement of existing bio-
therapeutics. 
 

2. MATERIALS AND METHODS 
 
2.1 Dataset Collection 
 
In order to study the monoclonal antibodies, we 
carried out an extensive research in the literature 
and available databases. We analyzed 
antibodies that have been approved by the U.S. 
Food and Drug Administration (FDA) and have 
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been indicated for the treatment of various acute 
and chronic diseases like cancer and 
autoimmune diseases. They are all IgG1 kappa 
immunoglobulins and they have several and 
different mechanisms of action. 
 
We collected the amino acid sequences of 
antibodies from the Protein Data Bank [22]. We 
obtained also the three-dimensional structures of 
antibodies from the Protein Data Bank (PDB ID 
for Alemtuzumab: 1CE1, PDB ID for 
Bevacizumab: 1BJ1 , PDB ID for Cetuximab: 
1YY8, PDB ID for Ofatumumab: 3GIZ, PDB ID 
for Pertuzumab: 1L71, PDB ID for Rituximab: 
2OSL, PDB ID for Trastuzumab: 1N8Z, PDB ID 
for Adalimumab: 3WD5, PDB ID for Infliximab: 
4G3Y, PDB ID for Natalizumab: 4IRZ, PDB ID for 
Ustekinumab: 3HMX). 
 
Additional information about the monoclonal 
antibodies was obtained from the Drug Bank [23] 
and the Monoclonal Antibodies Database, part of 
the IMGT®, the international ImMunoGeneTics 
information system® [24] in order to perform 
sequence analysis.  
 
2.2 Monoclonal Antibodies against 

Cancer 
 
Detailed information about monoclonal 
antibodies against cancer used in this study is 
presented in Table 1.   
 
2.3 Monoclonal Antibodies against 

Autoimmune Diseases 
 
Detailed information about monoclonal 
antibodies against autoimmune diseases used in 
this study is presented in Table 2.   
 

2.4 Aggregation-prone Regions  
 
In order to predict ‘aggregation-prone’ regions on 
the surface of antibodies, we used AMYLPRED2 
[25], a consensus method, which predicts 
‘aggregation-prone’ peptides on an amino acid 
sequence, from sequence alone, developed in 
our lab.  For each monoclonal antibody, the 
algorithm was applied to the amino acid 
sequence of each chain separately.  
 
Furthermore, sequence alignments of heavy 
chains and light chains were performed utilizing 
ClustalW [26], to identify similarities and 
differences between the antibodies used. 

2.5 Criteria of the Amino-acid Mutation 
 
Three criteria were followed in order to select the 
amino acids that may be substituted by others in 
the amino acid sequences of the monoclonal 
antibodies of the dataset.  
 
The first criterion was the accessibility of these 
amino acids to the solvent in the 3D-structure.  It 
is undesirable to change amino acids that are not 
on the surface of the protein, because these 
changes will probably affect the 3D-structure and 
the stability of the molecule.  For this reason, we 
located the amino acid residues of the antibodies 
exposed to the solvent with the help of the DSSP 
algorithm [27]. Residues that are in contact with 
at least two molecules of water and they are 
predicted by AMYLPRED2 [25] to be in 
‘aggregation-prone’ regions, were selected as 
possible candidates to be substituted by others. 
 
The second criterion was that the residues to be 
substituted should not be found in CDRs.  
Residues in these regions are responsible for the 
recognition and the interaction with the antigen-
target. For these reason, any change in these 
regions may cause unexpected effects to the 
functionality of the antibody. 
 
The third criterion was to replace amino acid 
residues with exposed side chains, in                           
the predicted ‘aggregation-prone’ regions, 
considering the experimental aggregation 
propensities of the 20 natural amino acids [28].  
According to the propensities, residues that are 
‘aggregation-prone’ have positive values and 
those that are not have negative values. The 
higher the tension to form aggregates, the 
greater the positive value is and the same 
applies for the negative values, respectively. 
 
We also took into account the 3D-structure (Fab 
fragment) of the antibodies in order to be certain 
that our ‘mutations’ do not affect overall the 3D-
structure. 
 

2.6 Clusters 
 
After performing sequence alignments of all the 
monoclonal antibodies in the dataset, for the light 
(Fig. 1) and the heavy (Fig. 2) chain separately, 
we discovered some common groups of 
‘aggregation-prone’ regions in the amino acid 
sequences of the antibodies that are present in 
almost all the monoclonal antibodies that are 
now on the market, against cancer and 
autoimmune diseases, in a similar way as it was 
done in [29].  
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Table 1. Monoclonal antibodies against cancer used in this study 
 

 MAbs Trade name Source Type Target PDB Id Clinical indications FDA approval Clinical trials 
1 Alemtuzumab [42-47] CAMPATH® Humanized IgG1-kappa CD52 1CE1, 1BEY Chronic lymphocytic leukemia 2001 Phase M 
       Multiple sclerosis 2013 Phase M 
       Kidney transplant rejection  Phase I/II 
2 Bevacizumab [48-53] AVASTIN® Humanized IgG1-kappa VEGF-A 1BJ1 Colorectal cancer 2004 Phase M 
       Lung cancer 2006 Phase M 
       Breast cancer 2008 Phase M 
       Renal cell carcinoma 2009 Phase M 
       Glioblastoma 2011 Phase M 
       Cervical carcinoma 2014 Phase M 
3 Cetuximab [54-59] ERBITUX® Chimeric IgG1-kappa EGFR 1YY8, 1YY9 Colorectal cancer 2004 Phase M 
4 Ofatumumab [60-65] ARZERRA® Human IgG1-kappa CD20 3GIZ Chronic lymphocytic leukemia 2009 Phase M 
       Non-Hodgkin’s lymphoma  Phase III 
5 Pertuzumab [66-68] PERJETA® Humanized IgG1-kappa ERBB2 1L7I, 1S78 Breast cancer 2012 Phase M 
       Prostate cancer  Phase II 
6 Rituximab [69-74] RITUXAN® Chimeric IgG1-kappa CD20 2OSL Non-Hodgkin’s lymphoma 1997 Phase M 
       Chronic lymphocytic leukemia 2010 Phase M 
7 Trastuzumab [75-79] HERCEPTIN® Humanized IgG1-kappa ERBB2 1N8Z Breast cancer 1998 Phase M 
       Gastric cancer 2010 Phase M 
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Table 2. Monoclonal antibodies against autoimmune d iseases used in this study 
 

 MAbs  Trade name Source  Type Target  PDB Id  Clinical Indications  FDA approval  Clinical trials  
1 Adalimumab [80-87] HUMIRA® Human IgG1-kappa TNF-A 3WD5 Rheumatoid arthritis  2002 Phase M 
       Psoriatic arthritis 2005 Phase M 
       Ankylosing spondylitis 2006 Phase M 
       Juvenile idiopathic arthritis 2008 Phase M 
       Psoriasis 2008 Phase M 
       Crohn’s disease 2010 Phase M 
       Ulcerative colitis 2012 Phase M 
2 Infliximab [88-95] REMICADE® Chimeric IgG1-kappa TNF-A 4G3Y Crohn’s disease 1998 Phase M 
       Rheumatoid arthritis 1999 Phase M 
       Ankylosing spondylitis 2004 Phase M 
       Ulcerative colitis 2005 Phase M 
       Psoriatic arthritis 2005 Phase M 
       Psoriasis 2006 Phase M 
3 Natalizumab [96-98] TYSABRI® Humanized IgG4 ITGA4 4IRZ Multiple sclerosis 2004/2006 Phase M 
       Crohn’s disease 2008 Phase M 
4 Rituximab [69-74] RITUXAN® ABTHERA® Chimeric IgG1-kappa CD20 2OSL Rheumatoid arthritis 2006 Phase M 
5 Ustekinumab [99-103] STELARA® Human IgG1-kappa IL12A  L12B 3HMX 3HMW Psoriasis 2009 Phase M 
       Psoriatic arthritis 2013 Phase M 
       Multiple sclerosis  Phase II 
       Crohn’s disease  Phase II 
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Fig. 1.  Sequence alignment of light chains of all the monoc lonal antibodies of the dataset 
ClustalW was used for the alignment [26]. The molecule name and the PDB ID are mentioned.  The three CDRs 
are highlighted in yellow and named L1, L2 and L3. The predicted aggregation-prone regions are shown in red.  

The clusters of ‘aggregation-prone’ regions are also indicated (Cluster1, Cluster2, Cluster3, Cluster4) 
 

These ‘aggregation-prone’ regions were grouped 
into clusters according to their positions in the 
3D-structure (Figs. 3A, B).  With specific changes 
of amino acid residues, only in the peptides that 

are present in ‘aggregation-prone’ regions, we 
successfully diminished ‘aggregation-prone’ 
clusters or even made them to disappear 
completely (Figs. 3A, B).  
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Fig. 2.  Sequence alignment of heavy chains of all the monoc lonal antibodies of the dataset  
 ClustalW was used for the alignment [26]. The molecule name and the PDB ID are mentioned. The three CDRs 

are highlighted in yellow and named H1, H2 and H3. The predicted aggregation-prone regions are in red.  
The clusters of ‘aggregation-prone’ regions are also indicated (Cluster3, Cluster5) 
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Fig. 3A. Space-filling models of the monoclonal ant ibody Rituximab (Rituxan) (PDB ID: 2OSL) 
produced utilizing the software Chimera 1.8 [31]  

The molecule name and the PDB ID are mentioned. Light chain in grey, heavy chain in blue, ‘aggregation-prone’ 
regions in red, CDRs in yellow, ’aggregation-prone’ regions in CDRs in cyan and the residues that will be 

substituted are depicted with green color. The ‘BEFORE’ images illustrate the stage before the substitutions and 
the names of the clusters, for front and back view. The ‘AFTER’ images represent the structures after the 

substitutions and the substitutions made (residue that was substituted and position), for front and back view 
 

 

Fig. 3B. Space-filling models of the monoclonal ant ibody Adalimumab (Humira)  
(PDB ID: 3WD5) produced utilizing the software Chim era 1.8 [31] 

The molecule name and the PDB ID are mentioned. Light chain in grey, heavy chain in blue, ‘aggregation-prone’ 
regions in red, CDRs in yellow, ‘aggregation-prone’ regions in CDRs in cyan and the residues that will be 

substituted are depicted with green color. The ‘BEFORE’ images illustrate the stage before the substitutions and 
the names of the clusters, for front and back view. The ‘AFTER’ images represent the structures after the 

substitutions and the substitutions made (residue that was substituted and position), for front and back view  
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The procedure of selecting the amino acids that 
will substitute the initial ones was really tedious, 
because of the fact that for each residue, in each 
chain, in each antibody of the dataset all 
possibilities were tested manually.  
Consequently, residues with exposed side 
chains, in ‘aggregation-prone’ regions, were 
substituted by others with lower tendency to form 
aggregates, but with similar physicochemical 
properties and the potential to form aggregates 
was reduced or even eliminated in some cases. 
 

2.7 Novel Models - Evaluation and 
Improvements 

 
After the substitutions, novel amino acid 
sequences were created.  The AMYLPRED2 [25] 
consensus method was used again to predict 
‘aggregation-prone’ regions in the novel amino 
acid sequences.   
 
The Modeller 9.13 [30] software was used for 
homology modeling and novel models of the 
‘mutated’ proteins were calculated, utilizing as 
templates the native structures. The side chains 
of the ‘mutated’ residues were examined and 
optimized, in order to ensure that the side chains 
are still exposed and to avoid steric hindrance.  
This was done utilizing Chimera 1.8 [31] and its 
capability to minimize the energy of the structure.  
The PROCHECK [32] and WHAT_CHECK [33], 
from software WHAT IF [34], algorithms were 
used to check the validity and the quality of the 
novel models.  Special care was taken so that 
the CDR conformations remain unaltered in the 
novel models.  
 

3. RESULTS 
 
The sequence alignments of all monoclonal 
antibodies in the dataset, for the light and the 
heavy chain separately, are presented in Figs. 1 
and 2, respectively. The CDRs for light and 
heavy chain are named L1, L2, L3 and H1, H2, 
H3 accordingly. The ‘aggregation-prone’ regions, 
that AMYLPRED2 [25] consensus method 
predicted, are also illustrated and grouped into 
clusters according to their position  in the 3D-
structure (Figs. 3A and 3B, BEFORE and Figs. 1 
and 2). These clusters were called Cluster1 – 
Cluster5. Only two specific examples for the 
monoclonal antibodies RITUXIMAB and 
ADALIMUMAB are shown in Figs. 3A and 3B. 
 
Performing specific changes of amino acid 
residues, only in the clusters, ‘aggregation-prone’ 
clusters were successfully diminished or even 

eliminated completely (shown explicitly in                
Figs. 3A and 3B, AFTER).  
 
The clusters that we grouped the common 
‘aggregation-prone’ regions, according to the 3D-
structure of the proteins, are also presented in 
Table 3 in the column ‘Clusters’. The column 
‘Regions’ contains the common ‘aggregation-
prone’ regions, the column ‘Chain’ the chain of 
the regions and the column ‘Peptides’ presents 
the different peptides that were found in the 
common ‘aggregation-prone’ regions.  The amino 
acids that were substituted are illustrated in bold 
and they are underlined. The column ‘After 
Substitutions’ contains the peptides after the 
substitutions. In some cases, some ‘aggregation-
prone’ peptides were eliminated completely and 
this is depicted with the symbol (√). In other 
cases the ‘aggregation-prone’ peptides were 
diminished sufficiently and the peptides that 
remain are presented in the table. 
 
Taking a closer look to the amino acids that were 
substituted, the amino acids Threonine (THR, T) 
and the amino acid Serine (SER, S) were mostly 
substituted. Other amino acids that were 
considerably substituted by others, were the 
amino acids Tyrosine (TYR, Y), Valine (VAL, V), 
Isoleucine (ISO, I) and Leucine (LEU, L). Thus, 
polar and hydrophobic amino acids which seem 
to favor aggregation should be substituted by 
other polar or charged amino acids, considering 
the experimental aggregation propensities of the 
20 natural amino acids [28]. 
 
Every ‘aggregation-prone’ peptide, which 
belongs to a cluster, with a combination of one or 
two substitutions, will no longer be ‘aggregation-
prone’.  There are several potential combinations 
of substitutions that may bring the desirable 
result. The novel models that are proposed, after 
the substitutions, will be less ‘aggregation-prone’ 
and should not provoke immunological reactions 
to patients. This remains to be proven by more 
refined experimental work. 
 
We conclude that, comparing the space-filling 
models before and after the substitutions, with 
specific replacements of exposed amino acid 
residues, only in the clusters that contain 
common ‘aggregation-prone’ regions, the 
potential of antibodies to form aggregates will be 
reduced or even eliminated. Accordingly, their 
aggregation propensity should also be reduced 
without affecting the potency of the bio-
therapeutics. 
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Table 3. Summary of the clusters of the common ‘agg regation-prone’ regions in the antibodies 
used for this study 

 

Clusters  Regions  Chain  Peptides  After  substitutions  
Cluster1 RVTITC LIGHT RVTITC √ 
  LIGHT RVTITC √ 
Cluster1 [FY]T[FL]TISS LIGHT FTFTISS FTFTIS 
  LIGHT FTLTISS √ 
Cluster2 I[VL]LTQ LIGHT ILLTQ √ 
  LIGHT I[VL]LTQ √ 
Cluster2 [AV]ILS[AV] LIGHT [AV]ILS[AV] √ 
Cluster3 PSVFIF LIGHT PSVFIF √ 
  LIGHT PSVFIF √ 
  LIGHT PSVFIF FI 
Cluster3 TASVVCLLNNFY LIGHT TASVVCLLNNFY SVVCLLNN 
  LIGHT TASVVCLLNNFY SVVCLLNNF 
Cluster3 YSLSSVVTV HEAVY YSLSSVVTV √ 
Cluster3 GTQTYICNVN HEAVY GTQTYICNVN √ 
  HEAVY GTQTYICNVN √ 
  HEAVY GTQTYICNV √ 
  HEAVY TYTC √ 
Cluster4 A[TV]YYC LIGHT ATYYC √ 
  LIGHT ATYYC √ 
  LIGHT AVYYC √ 
Cluster5 [TS]A[VIL]YYC HEAVY TAVYYC YYC 
  HEAVY SAVYYC √ 
  HEAVY AVYYC √ 
  HEAVY TAVYYC √ 
  HEAVY TAIYYC √ 
  HEAVY TALYYC ALYY 
Cluster5 G[TS][TL]VTVS[SA] HEAVY GTLVTVS[SA] √ 
  HEAVY GTTVTVS[SA] √ 
  HEAVY TLTVSS √ 
  HEAVY GSLVTVS[SA] √ 
  HEAVY GTLVTVSS √ 
BURIED GCLVK HEAVY GCLVK GCLVK 
BURIED W[IVL][GSA] HEAVY W[IVL][GSA] W[IVL][GSA] 

The clusters of the ‘aggregation-prone’ regions, the ‘aggregation-prone’ regions, the chain, the specific peptides 
for each region (the amino acids that were substituted are in bold letters and underlined) and the final results 
after the substitutions (the ‘aggregation-prone’ peptides that were eliminated completely are depicted with (√)  

and the ones that remain are shown) 
 

4. DISCUSSION 
 
The mechanisms of protein aggregation are very 
complicated. Protein aggregation and the 
problems it causes in biopharmaceutics are 
discussed in detail, in a relatively recent excellent 
review [16]. The aggregation of a protein in 
solution is driven by intrinsic and extrinsic factors 
[29]. The sequences and structures of Fab 
commercial and non-commercial antibodies were 
studied in detail by these authors, utilizing the 
computational tools TANGO [35] and PAGE [36], 
to identify potential aggregation-prone regions in 
these antibodies (intrinsic aggregation factors).  
They discovered in their dataset 2 to 8 
aggregation-prone motifs per heavy and light 

chain pair.  Some of these motifs were located in 
variable domains, mainly in CDRs [29].   
 

In this work, we collected all mAbs against 
cancer and autoimmune diseases, with solved 
crystal structures from the PDB [22], and with aid 
of AMYLPRED2 [25], a consensus algorithm, 
which combines eleven (11) individual  
algorithms for the prediction of aggregation-
prone sequences in globular proteins (including 
TANGO), we predicted aggregation-prone 
regions in the light and heavy chains of these 
antibodies.  
 

We should mention here that, AMYLPRED2 (and 
its previous version AMYLPRED) have been 
used with considerable success, in recent years, 
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for the prediction of aggregation-prone peptides 
in amyloidogenic proteins [37-41]. The predicted 
aggregation-prone peptides have been 
synthesized and experimentally shown to self-
assemble (aggregate) to form amyloid-like fibrils.   
AMYLPRED2, freely available for academic 
users, is one of the most successful algorithms 
for the prediction of aggregation-prone segments 
(peptides) in globular proteins, as can be seen in 
the original publication [25]. 
 
The idea of predicting aggregation-prone regions 
of light and heavy chains of mAbs was to try to 
identify clusters of aggregation-prone regions 
that could create aggregation “hot-spots” on the 
surface of these proteins. These aggregation 
“hot-spots” could drive the mAbs to aggregate.  
Performing suitably selected mutations on these 
“hot-spots”, we managed to diminish or even 
completely eliminate them. Special care was 
taken that the performed mutations did not affect 
the conformations of the CDRs of the antibodies.  
Also, care was taken that the mutations were             
not performed to amino acids contained in 
aggregation-prone regions, which overlap with 
CDRs. 
 

5. CONCLUSION 
 
This computational study can be generalized in 
other monoclonal antibodies that are used 
therapeutically for other diseases. Work is in 
progress along these lines (In preparation). It 
should be emphasized that experiments should 
be performed to experimentally test the 
monoclonal antibody variants predicted in this 
study and verify that have lower aggregation 
propensities and also ensure that there will be no 
side effects. A general computational method      
for a semi-automated optimization of the 
aggregation propensity of all monoclonal 
antibodies will be proposed soon (work in 
preparation). 
 

We hope and anticipate that the combination of 
predictions, experiments and molecular models 
of the candidate targets can be applied on novel 
and existing bio-therapeutics with promising 
results. Finally, the continuous development and 
application of rational protein design technology 
will enable improvements in the efficacy and 
safety of protein therapeutics. 
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