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Chain Model
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Abstract: - The task of finding B-barrel outer membrane proteins of the gram-negative bacteria is of great
importance in current Bioinformatics research. We developed a computational method, which discriminates B-
barrel outer membrane proteins from globular ones and, also, from a-helical membrane proteins. The method
is based on a 1* order Markov Chain model, which captures the alternating pattern of hydrophilic-hydrophobic
residues occurring in the membrane-spanning beta-strands of beta-barrel outer membrane proteins. The model
achieves high accuracy in discriminating outer membrane proteins, and could be used alone, or in conjunction
with other more sophisticated methods, already available.

Key-Words: - outer membrane proteins, beta barrel, Markov chains, bioinformatics.

1 Introduction

B-barrel membrane proteins, constitute one of the
two main structural classes of integral membrane
proteins. They are located in the outer membrane of
gram-negative bacteria, and presumably in the outer
membrane of chloroplasts and mitochondria. These
proteins have their membrane spanning segments
formed by antiparallel B-strands, creating a channel
in the form of a barrel that spans the outer
membrane [1]. This is in contrast to the a-helical
membrane proteins of the cytoplasmic membrane of
all cells, that have their membrane spanning regions
forming «-helices, which mainly consist of
hydrophobic residues [2]. Whereas the prediction of
transmembrane regions and consequently the
genome-wide prediction of a-helical membrane
proteins is nowadays a relatively easy task, this is
not the case for the P-barrel membrane proteins.
This is due to the lack of a clear pattern in their
membrane spanning strands, such as the stretch of
15-30 consecutive hydrophobic residues or the
Positive Inside rule, which occur in the a-helical
proteins. Furthermore, discrimination of
transmembrane strands from other [-strands,
forming B-barrel structures in water-soluble
proteins, is even more difficult. The reason for that
is the fact that water-soluble proteins that form f3-

barrel structures, share (up to a certain degree)
common features with the transmembrane strands of
the bacterial outer membrane proteins, such as
amphipathicity. The p-barrel outer membrane
proteins perform a wide variety of functions such as
active ion transport, passive nutrient uptake,
membrane anchoring, adhesion, and catalytic
activity. A large number of pathogens are actually
bacteria belonging to the gram-negative bacteria
class, and for those bacteria the virulence activity in
a lot of cases has been proven to depend on specific
outer membrane proteins. Considering additionally
the important biological functions in which outer
membrane proteins are involved in, it is not a
surprise that these proteins attract an increased
medical interest. This is confirmed by the
continuously increasing number of completely
sequenced genomes of gram-negative bacteria
deposited in the public databases. A few approaches
have been made, in the direction of predicting the
transmembrane strands of outer membrane proteins
and/or identifying those proteins when searching
large data sets; they are based on studies of the
physico-chemical properties of the P-strands, such
as hydrophobicity and amphipathicity [3], statistical
analyses based on the amino acid composition of the
known structures [4], or machine learning
techniques like neural network predictors [5], and



WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE __ Issue 2, Vol. 1, April 2004

Hidden Markov Models [6, 7, 8]. Recently, two
methods based on HMMs [7, 8], achieved the
highest accuracy.

In this work, we developed a computationally
rather simple and fast method that discriminates
with high accuracy and precision [B-barrel outer
membrane proteins in large datasets. The method is
based on a Markov Chain model [9], which captures
the alteration of hydrophilic-hydrophobic residues in
the transmembrane B-strands of outer membrane
proteins, while, at the same time it does not predict a
large number of false positives. The model was
trained on a non-redundant set of 121
experimentally verified outer membrane proteins,
and has been tested with a jackknife procedure,
yielding 89.26% and 92.67% correct classification
rate for outer membrane and globular proteins,
respectively. Furthermore, the model produces no
false positive results when screening a dataset of
276 experimentally verified «-helical membrane
proteins set.

2 Materials and Methods

In sub-section 2.1 we present the algorithmic details,
of the Markov chain model we used, whereas in sub-
section 2.2 we describe the datasets used for training
and testing the method. In this section we are mainly
using the notation of Durbin et al. [9].

2.1 The Markov Chain.
If we denote an amino-acid sequence of length n, by

x such as:
X=X, X000 X,_15 %,

and consider the amino-acid distribution at each
position i along the sequence as a random variable,
then we can define a Markov chain as a stochastic
process with what is called a Markov Property. In
the discrete case (such as in our case), the process
consists of the sequence x of random variables
taking values in a "state space" defined on the
alphabet of the amino-acids, the value of x; being
"the state of the system at time i". The (discrete-
time) Markov property states that the conditional
distribution of the "future"

X; 15 X025 Xi035--- given the "past”, Xx,,x,,...
depends on the past only through x;. In other words,
knowledge of the most recent past state of the
system renders knowledge of less recent history
irrelevant, This is formulated by:

P(x! |x|'-!""’x1)=P(xr‘|xj—l) 1

3 Xi 19 X;

i=12

Each particular Markov chain may be identified with
its matrix of "transition probabilities”, often called
simply its transition matrix [9]. The entries in the
transition matrix are given by:

a, = P(xi =1 | Xia = S) = axi_,.\-,-

and this is the probability of residue 7 occurring at
position i in the sequence, given that the preceding
residue (i-1) is 5. Considering that we can generalize
the dependence over k “past” (preceding) residues,
this kind of Markov Chain is usually denoted a 1*
order Markov Chain. The total probability of a
sequence is computed according to:

P(x) = P(x,,xz,...,xn_,,xn)=
=P(x, | %, 500 %) P(X,1 | Xpgoeoos
and from (1) we have:

P(x)=P(x, %, ) P(%, 4 | X, )P(x, | %) P(x,)

-P(x,)l—[P(x |x,.)=P(x) Ha .

i=2
where P(x,) is the probability for the starting
symbol. The Maximum Likelihood Estimates
(MLEs) of the transition probabilities [9], are
computed according to:

x,)...P(x,)

~ cx,_lx‘

a‘i—l‘d -
E C
X' K%

where ¢, are the observed counts of residue s
followed by residue ¢ in the training sequences, and
the sum in the denominator extends over the hole
alphabet of the 20 amino-acids. Assuming two
different models, using different transition
probabilities matrices (a model for the positive
examples denoted by +, and a model for the negative
examples denoted by -), we can define a log-odds
score S(x) for the entire sequence, which is useful
for discrimination pulposeS'
Zﬂ Xie1%i

S(x)= log (xl Zl

«'i-r’::
=] r-I x, i=l

where ﬂr;..xf , is the log-odds for the transition from

residue x;.;to x; and it is a measure of the propensity
for that transition probability to occur more
frequently in to one or the other model. Values of

B, larger than zero indicate preference for model

+, whereas values smaller than zero a preference for
model -. In order to eliminate the influence of the
sequence length on the total score, we further
normalize by dividing with the length n of the
sequence, thus producing a normalized score (per
residue log-odds score).
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o) S _ ZPe
S"m(x) = =d= )
n n
Considering higher-order (¥") Markov Chains, the
generalization of Equation (1) is straightforward to
include the dependence on k residues back in the
sequence:

A CARREY L
= P(xr' l Xicts Xizgseres Xyg ) = ax, R A 2
since

P(xi | xi_u Ii_z,...,xi_k) =

= P(xi!xi—l""’x'uh-] Ixx'—l’xi-Z""!xx‘-k)

the ¥* order Markov Chain reduces to a 1% order
one, over an alphabet of size 20%, thus requiring the
calculation of a transition matrix of 20*"'x20*"
transition probabilities. Thus, whereas for a 1* order
model we needed to calculate 20°=400 transition
probabilities, for a 3™ order model we need
20°=8000, and when the number of sequences used
for training is limited, this could lead to over-fitting
and to an inadequate training. In general, the higher
the order of the model the better would be the
discriminative power, but practical limitations
arising from the size of the sequence database used
for ftraining, forced us to be parsimonious
concerning the order of the model.

2.2 Training and testing sets

For training the model we compiled a non-redundant
dataset of well-annotated B-barrel outer membrane
proteins. We collected the sequences belonging to
the dataset used in the validation of the PSORT-B
algorithm [10]. The sequences have been submitted
to a redundancy check, removing chains with a
sequence identity above some threshold. We
considered two sequences as being homologues, if
they demonstrated an identity above 30% in a
pairwise alignment, in a length longer than 80
residues. For the pairwise local alignment we used
BlastP [11] with default parameters, and the
homologous sequences were removed implementing
Algorithm 2 from Hobohm et al [12]. The
remaining 121 outer membrane proteins constitute
our positive examples training set.

As a negative examples set, we used an
additional dataset of globular proteins, with known
3-dimensional structures deposited in PDB [13].
This set was compiled using the PAPIA [14] server,
with the sequence similarity threshold set to 25%,
and excluding membrane proteins, proteins with a
length lower than 80 residues, and proteins with at
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least one unidentifiable residue in the sequence;
finally we came up with 1133 sequences of such
globular proteins,

To further test the ability of the model to
correctly predict outer membrane (3-barrel proteins,
we used few additional sets. Thus, we used the
entire TMPDB database [15], which contains 276 a-
helical membrane proteins with experimentally
determined topology, in order to examine the ability
of the model to discriminate outer membrane [-
barrel proteins from o-helical ones. As an
independent test set of P-barrel outer membrane
proteins, we used the 149 sequences belonging to
the sub-class P-barrel porins, of the class
channels/pores of the TCDB [16].

As a final independent test set, we used a set of
100,000 simulated sequences with aminoacid
composition similar to that of the Swiss-Prot
database [17]. This was done in order to address the
question regarding the rate of false positives
occurring purely by chance.

3 Results

Using Equation (2) we were able to obtain a
prediction for each protein, in the dataset. Simply, if
S(x) is greater than zero the protein is predicted to
be an outer membrane protein, otherwise it is not
predicted to be an outer membrane protein. The
accuracy of the trained model (self consistency) is
rather high. It correctly predicts 112 out of the 121
outer membrane proteins in the training set
(92.56%) and 1052 out of the 1100 globular proteins
(92.85%). The model has also been tested with the
well-known jacknife procedure which consists of
removing a protein from the training set, training the
mode! with the remaining proteins and performing
the test on the protein removed. This process is
tandemly repeated for all proteins in the training set,
and the final prediction accuracy summarizes the
outcome of all independent tests. In this jackknife
test, the model correctly predicts 109 out of the 121
outer membrane proteins (90.08%) and 1050 out of
the 1133 globular proteins (92.67%). These results
are similar with those obtained by the HMMs in [7,
8].

In the independent set of 149 B-barrel membrane
proteins from TCDB used for evaluation, the model
correctly predicts 137 proteins (91.96%), whereas in
the independent set of 276 o-helical membrane
proteins derived from TMPDB, the model does not
produce even one false positive (100%).
Furthermore, in the 100,000 simulated sequences the
model produces false positive results with an
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extremely low rate of 0.57%. All the above indicate
that the Markov Chain model captures some of the
special features of the B-barrel outer membrane
proteins, and thus it could reliably used for
predicting the nature of newly determined not-
annotated proteins,

4 Conclusions

We presented here a Markov Chain model that
discriminates with high accuracy and precision B-
barrel outer membrane proteins. The model reaches
similar predicting performance in the discrimination
procedure with other more sophisticated methods
such as the Hidden Markov Model, and it could be
used in conjunction with them in order to achieve
better predictions. The method is computationally
simple, thus it is very fast and suitable for screening
large datasets such as entire proteomes of gram-
negative bacteria, in order to find novel outer
membrane proteins. A web server running the
application is  available at the url:
http://bioinformatics.biol.uoa.gr/membb, where the
user may submit up to 500 sequences and receive
the prediction.
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