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G-protein coupled receptors (GPCRs) constitute a broad class of cell-surface receptors, including several
functionally distinct families, that play a key role in cellular signalling and regulation of basic physiological
processes. GPCRs are the focus of a significant amount of current pharmaceutical research since they interact with
more than 50% of prescription drugs, whereas they still comprise the best potential targets for drug design. Taking
into account the excess of data derived by genome sequencing projects, the use of computational tools for automated
characterization of novel GPCRs is imperative. Typical computational strategies for identifying and classifying
GPCRs involve sequence similarity searches (e.g. BLAST) coupled with pattern database analysis (e.g. PROSITE,
BLOCKS). The diagnostic method presented here is based on a probabilistic approach that exploits highly
discriminative profile Hidden Markov Models, excised from low entropy regions of multiple sequence alignments,
to derive potent family signatures. For a given query, a P-value is obtained, combining individual hits derived from
the same family. Hence a best-guess family membership is depicted, allowing GPCRs’ classification at a family
level, solely using primary structure information. A web-based version of the application is freely available at
URL: http://bioinformatics.biol.uoa.gr/PRED-GPCR.
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INTRODUCTION

G protein coupled receptors (GPCRs) constitute a vast cell surface receptor family, populated

with hundreds of members with versatile functions. GPCRs are also referred to as seven-

transmembrane receptors, because of their characteristic configuration of an anticlockwise

bundle of 7 transmembrane a helices, signal by activating heterotrimeric G proteins,

although alternative signalling pathways have recently been described [1]. The upstream

position of GPCRs in various basic regulatory pathways along with their accessibility, due to

their membrane localization, have designated GPCRs as a highly amenable target class to

therapeutic intervention. Furthermore, the completion of various genome and proteome
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projects is proving to be a driving force for the growing role of GPCRs in drug discovery.

These projects have yielded a drove of putative GPCRs with unknown functions and ligands,

better known as “orphan” GPCRs. In the absence of experimental data, computational

methods are the simplest and most frequently used strategy when trying to identify and attain

functional specificity to novel receptors.

GPCRs can be grouped into six distinct classes A,B,C,D,E and frizzled/Smoothened

family as defined by GPCRDB classification on the base of shared sequence motifs [2].

Traditionally, though, GPCRs’ family classification is based on receptor’s ligand specificity.

However, common ligand specificity does not necessarily infer a certain level of sequence

identity. Somehow some higher-order relationship between sequence and binding of ligands

of a particular chemical class seems to exist, as revealed by phylogenetic analysis [3].

Nevertheless, no clear correlation between sequence similarity and ligand specificity can be

assessed; sequences within the same family are often heterogeneous, sharing as little as 25%

identity to one another (e.g. members of the histamine receptor family), whereas others,

with a high degree of overall similarity can have little in common when it comes to function.

To tangle things more, some GPCRs appear to be, partly, mosaics of modular domains,

repeated among families functionally distinct [4]. These observations reflect a complex

evolutionary background with GPCR sequences converging, diverging or following parallel

branches, before they come up with their current functional profile.

Database search methods based on pairwise similarity (e.g. BLAST [5]) do not take

such subtleties into account since they only appreciate generic similarities between

sequences. As a result, top-scoring matches cannot safely be assumed functional analogues

of a query sequence.

Pattern databases such as PROSITE [6], Pfam [7], BLOCKS [8], PRINTS [9], and InterPro

[10] were built in order to overcome such problems. The common approach behind these

databases is to deploy key regions, as “baits” in order to distinguish between families, instead

of using the whole sequence. These regions, often referred to as signatures, characterize one

family and highly improve the diagnostic performance of automated classification.

Moreover, signatures often indicate functional or structural determinants within a certain

family.

Several methods are used to encode the information of such regions. These methods

include regular expressions (PROSITE [6]), position-specific scoring matrices (BLOCKS

[8]), frequency matrices (PRINTS [9]) and profile hidden Markov models (Pfam [7]).

Profile hidden Markov models (profile HMMs) are statistical models of the primary

structure consensus of a sequence family [11]. From the methods mentioned above, profile

HMMs is the only one that has a formal probabilistic basis and the only method for encoding

gapped regions of alignments, which could also contain crucial information [11,12]. Karchin

et al. [13] showed that profile HMMs can accurately distinguish among GPCR superfamilies.

Highly informative profile HMMs may be constructed either from full-length multiple

sequence alignments (MSAs) or conserved MSA segments. However, such profiles turned

out not to perform particularly well when applied to higher-level GPCRs-classification

problems. This should have been expected, considering that:

a. higher-level GPCR-classification is not based solely on sequence similarity and

b. many GPCRs with analogous functions have resulted from convergent evolution.

This is why only a few profiles that correspond to GPCR ligand specificity are currently

available in Pfam.

The approach proposed in our method exploits the descriptive power of profile HMMs

along with an exhaustive discrimination assessment method to select only highly selective
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and sensitive profiles, after mass-constructing confined conserved blocks of MSAs for each

family. The collection of these profiles constitutes a signature library, which is scanned in

order to determine to which GPCR family a query sequence belongs or resembles (Fig. 1).

MATERIALS AND METHODS

Primary Data

In this work we used a set of 1866 well-annotated eucaryotic receptors, excluding fragments,

carefully collected from the Swiss-Prot and TrEMBL databases [14]. Of these, 965 were

GPCRs with known ligands, partitioned into subsets of 65 families based on the

pharmacological classification of receptors [15] and the GPCRDB information system [2].

These subsets were used for the construction of each family’s multiple sequence alignment.

FIGURE 1 Flow diagram of the method. (A) HMM library construction. First an MSA is constructed for each
family subset. Then MSA blocks of low entropy are selected and all overlapping windows with a predefined
maximum width are created. For each window a HMM is created. The performance of all HMMs as family classifiers
is estimated after a hmmsearch- pass through the membrane receptors data set. Only those HMMs with high
selectivity and sensitivity for the family are selected for the HMM library. (B) Query. A given sequence or set of
sequences is queried against the HMM library using the hmmpfam program. Combined P-values for each family are
obtained, implementing the Qfast algorithm. The results are reported ranked with a P-value ascending order.

GPCRs FAMILY CLASSIFICATION WITH HMMS 415



The remaining 901 sequences were non-GPCR membrane receptors used, along with the 965

GPCR sequences, for the evaluation of each profile HMM as a classifier of a particular GPCR

family.

HMM Library Construction

Selecting Low Entropy Blocks from Multiple Alignments

Initially, multiple sequence alignments were constructed for each GPCR family, using

the ClustalX 1.81 package [16]. Pairwise alignment parameters were set as: an opening

gap penalty of 10, an extension gap penalty of 0.1 and a Blosum 30 scoring matrix [17].

Multiple alignment parameters were set as: an opening gap penalty of 10, an extension gap

penalty of 0.2 and the Blosum series of scoring matrices [17].

ClustalX provides an indication of the quality of an alignment by assigning a normalized

“conservation score” (Sc) for each column of the alignment, which varies from 0 to 100 [16]

(Fig. 2).

Low entropy “cores” of 5 contiguous columns with �Sc $ Thc were detected. The threshold

Thc was empirically set to 30 as below this value performance did not seem to improve.

For these “cores” both flanking regions are examined and extended until they are surrounded

by at least 3 consecutive non-conserved columns at both flanking regions. A column is

considered as non-conserved if Sc # 20: This value was set lower than Thc to ensure that no

critical columns, near a conserved MSA fragment, will be lost during block construction.

This procedure excludes divergent segments where alignment is either ambiguous or

saturated by multiple substitutions [18,19] resulting in low entropy blocks of varying length.

For each conserved block, sliding MSA windows with a predefined maximum width of

21 columns were created (Fig. 2). For each MSA window an HMM was built and calibrated

with the HMMER (v 2.2) software package [20]. A relatively small value of length for

FIGURE 2 A small fragment of the MSA of the parathyroid hormone receptor family built with ClustalX.
Below the MSA, ClustalX provides a histogram for the columns’ conservation scores. Blocks of low entropy from
the MSAs are selected with a computerized method that excludes positions where the alignment is ambiguous or is
likely to be saturated with multiple substitutions. All possible MSA windows with a predefined maximum width of
21 columns are created for each block. The start and end positions (colored squares and bars respectively) for the
six possible MSA windows of this block are depicted below the histogram.
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the HMMs is desirable in order to bring out and capture subtle differences between closely

related families, lying in narrow key-regions of the sequence [21]. The forfeit is that the

informative content and, therefore, the absolute scoring potency of such models is confined.

However the use of multiple signatures for each family can compensate for the low

informative content of each particular profile.

Evaluating the Performance of Profile HMMs as Family Classifiers

The performance of each HMM as a classifier of a family with n members was estimated

after an hmmsearch-pass through the membrane receptors data set. Therefore, for each

family this data set consists of n positive examples and 1866-n negative examples

(see Primary data). The hmmsearch program of the HMMER package returns a list of all

matching sequences in ascending order of expectation values (E-values) [20]. The threshold

E-value was arbitrarily set to 1 and selection of those HMMs to join the family specific HMM

signatures library was based upon the following criteria, assessed in a hierarchical manner:

1. The calculated value of an empirical estimator of discriminative performance, DE. Albeit

all true positives (TP) are considered equally important, early raises of the false positive

rate (FPR, FP/negatives), are much more harmful when trying to spotlight family

signatures. Therefore, we used coverage (percentage of true positives, before the first

false positive error) to measure sensitivity and a logarithmic transformation of FPs,

normalized for all negatives, to measure specificity. As a result the estimator is unbiased

for sensitivity and strongly weighted for high specificity:

DE ¼ C 2
logðFP þ 1Þ

logðN 2 n þ 1Þ
;

where N is the size of the data set (1866), n the number of family members, C is the

coverage (percentage of true positives, before the first false positive error) and FP is the

number of false positives. Note that the value logðN 2 n þ 1Þ is a constant for each

family. The fractional term of the function DE rises sharply for the first few FPs, whereas

it becomes insensitive for extreme values of FP. Since both terms of the function

(coverage, C and the fractional term) are regularized, DE varies from 21 to 1.

2. The E-value of the first False positive hit (FFP).

3. The E-value of the last True positive hit (LTP).

In the case of profiles derived from overlapping segments of the MSA, only the best one

was selected, according to the criteria discussed above, in order to ensure P-value

independence for a given query. This is important if a combined P-value for all common

family hits is to be calculated. P-value measures consistency between the results actually

obtained in the trial and the “pure chance” explanation for those results. The P-value of a

match of a sequence to a motif is defined as the probability, of a randomly generated

sequence of the same length, having a match score at least as high as the match score of the

sequence.

Querying the HMM Library

For a given unknown sequence, or set of sequences, the query is performed against the HMM

library, using the hmmpfam program of the HMMER software package [20]. hmmpfam reads

a sequence file and compares each sequence in it, one at a time, against all the HMMs in

the library looking for significantly similar sequence matches [20]. For all significant hits
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pointing to the same family a combined P-value is obtained, implementing the Q-fast

algorithm [22]. Q-fast provides a statistically valid method for combining sources of

evidence with independent, continuous distributions. A combined E-value for each family

can then be calculated, assuming a database size of kml sequences. Thus a measure of the

statistical significance, of a match of a sequence to all profiles derived from the same family,

is provided.

RESULTS AND DISCUSSION

To date the library houses a collection of more than 200 profile-HMMs for 65 families of

GPCRs. In order to confirm the specificity of our method we tested it on a set, which consists

of 1239 globular and 1361 non-GPCR transmembrane proteins with less than 25% pairwise

similarity. The combined E-value threshold was set to 0.03, which was the minimum error

point (MEP) for the membrane receptors data set. MEP is the E-value threshold where

classifiers make the fewest errors (false positives plus false negatives). Our method

misclassified only 0.4% of these negative examples. The results for this data set are

summarized in Table I.

To demonstrate the efficacy of the method we have applied it to an independent set of

310 well-annotated sequences of GPCRs, recently deposited in the Swiss-Prot database,

excluding fragments. These sequences were not included in the primary data set. Using the

same E-value threshold, our method classified correctly 298 of these sequences (success

rate 96%).

An online application of this method is freely accessible at URL: http://bioinformatics.

biol.uoa.gr/PRED-GPCR. Available options for this application include selection of an

E-value threshold and a filter that implements the CAST algorithm [23], allowing,

low-complexity region detection and selective masking. This filter can significantly improve

the selectivity of the method, since the sequence score takes into account all scoring domains

and could, therefore, return false positives in case of low scoring domains repeated along

the sequence.

An example of the search output for two query sequences is shown in Fig. 3. A separate

report is returned for each input sequence. This report consists of two sections: a ranked list

of the profile HMM matches, below the selected E-value cut-off, along with their

corresponding family, and a ranked list of the combined P-values, E-values and the number

of profiles matched for each family (Fig. 3). For the combined E-value calculation we assume

the HMMER default database size (59021) [20].

These results demonstrate the discriminative potency of this method and its probable use

as a screening tool for dissecting new members of known GPCR families from recently

sequenced genomes.

TABLE I Family recognition results on a test set of 1361 non-GPCR transmembrane proteins and 1239 globular
proteins with less than 25% pairwise similarity

Prediction

Number of unassigned sequences Number of falsely assigned sequences Incorrect assignment %

TM. 1353 8 0.6%
GLOB. 1236 3 0.2%
TOTAL 2589 11 0.4%

The combined E-value threshold was set to 0.03, which was the MEP (see text) for the primary data set.
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A very important attribute of this method is that no structural or functional information is

imposed a priori during the selection process of signature profile HMMs. Such information is

used, for example, for the Prints database GPCR-signatures selection [9]. Therefore,

following a reverse rationale, this method could offer some insight beyond the primary

structure level; further research is needed to explore the probable role of these sequence

segments, from which such discriminative profiles were derived, in determining the unique

structural and functional profile of each GPCR-family.
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